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Zusammenfassung

Das Grubengas aus Kohleflozen wurde innerhalb der letzten Jahre zunehmend fiir die
Produktion von Strom und Wirme genutzt (Thielemann et al. 2004). Global verursacht der
Kohlebergbau etwa 7% der jahrlichen Methanemissionen in die Atmosphéire (Denman et al.
2007). Die Kohlenstoff- und Wasserstoffisotopien des Methans in den Minenatmosphiren
zeigten, dass das Methan thermogenen und biogenen Ursprungs ist (Thielemann et al. 2004).

Das Ziel dieser Studie war der Nachweis der rezenten mikrobiellen Methanproduktion.
Die verantwortlichen Mikroorganismen sollten identifiziert und physiologisch charakterisiert
werden. Die aktiven methanogenen Archaeen sollten identifiziert und quantitativ erfasst
werden, aber auch die aktiven Bakterien, die die methanogenen Prozesse begleiten. Fiir die
folgenden geochemischen und mikrobiologischen Untersuchungen wurde Steinkohle und
Grubenholz aus stillgelegten Kohleschichten zweier Zechen im Ruhrgebiet in Deutschland
entnommen und unter in situ Bedingungen inkubiert.

Unsere Untersuchungen zeigten, dass die mikrobielle Methanproduktion eine rezente
Methan-Ressource darstellt. Das Methan in den Minenatmosphdren wies eine
Gaszusammensetzung auf, die biogenen und thermogenen Ursprungs ist, wobei der biogene
Anteil mit bis zu 80% iiberwiegt. Identische Isotopien wurden auch in den in situ
Methanemissionen aus der Kohle und dem Grubenholz sowie in den Langzeitinkubationen
nachgewiesen. Die Langzeitinkubationen, in denen Kohle und Holz als alleinige
Kohlenstoffquelle vorhanden waren, zeigten eine konstante Methanproduktion {iber eine
Inkubationszeit von 9 Monaten mit einer hdheren Methanproduktion in den
Holzinkubationen. In den mit methanogenen Substraten, Acetat und H,+CO; angereicherten
Kulturen wurde vorwiegend die acetoclastische Methanogenese stimuliert. Die
Methanemissionsraten aus dem Holz waren 3-4mal hoher im Vergleich zur Kohle.

An der Methanbildung in diesem Minensystem ist eine komplexe Lebensgemeinschaft aktiv
involviert. Phylogenetische Analysen zeigten die Prdsenz einer Gemeinschaft aus Holz
abbauenden Pilzen (Ascomyceten und Basidiomyceten) und fakultativ anaerober Bakterien
(o - €) Proteobacteria, Bacteroidetes, Tenericutes, Actinobacteria, Chlorobi and Chloroflexi).
Die Archeen wurden von Vertretern der Methanosarcinales und der Crenarchaeen
reprasentiert. Die methanogene Gemeinschaft in den Anreicherungen und in den
Originalproben wurde von den Methanosarcinales, nahe verwandt mit Methanosarcina
barkeri, dominiert. Die acetoclastische Methanbildung erfolgte nicht nur in den Acetat

Anreicherungen sondern auch in den H;+CO; Stimulationen von Kohle und Holz. H,+CO,
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wurde hauptsidchlich von den Acetogenen, nahe verwandt mit Pelobacter acetylenicus und
Clostridium sp., genutzt. Diese bildeten Acetat welches dann den Methanogenen zur
Verfiigung steht. Obwohl Methanosarcina sp. dafiir bekannt ist sowohl H,+CO, als auch
Acetat fiir die Methanogenese zu nutzen, verwerteten die von uns identifizierten das leichter
zugingliche Acetat als den thermodynamisch giinstigeren Wasserstoff. Die mikrobielle
Gemeinschaft scheint sehr gut an die geringen Wasserstoff Konzentrationen in den

Kohleminen angepasst zu sein und nuzten Acetat als Hauptvorstufe fiir das biogene Methan.



Summary

Mine gas has come into the focus of the power industry and is being used increasingly for
heat and power production worldwide (Thielemann et al. 2004). About 7% of the annual
methane emissions originate from coal mining (Denman et al. 2007). In many coal deposits,
stable carbon and hydrogen isotopic signatures of methane indicate a mixed thermogenic and
biogenic origin (Thielemann et al. 2004).

The present study focused on the identification of recently produced coal-mine methane as
well as on the diversity, abundance, and activity of the microorganisms linked directly to
methanogenesis. We aimed to unravel the active methanogens being responsible for the
methane release but also the active bacteria involved in the metabolic network. Therefore,
weathered hard coal and mine timber were collected in two abandoned coal mines in the Ruhr
Basin of Germany.

The combined geochemical and microbiological investigations identified microbial
methanogenesis as a recent source of methane. Mine timber and hard coal showed an in situ
production of methane with isotopic signatures similar to those of the methane in the mine
atmosphere. Long-term incubations of coal and timber as sole carbon sources formed
methane over a period of 9 months. Predominantly, acetoclastic methanogenesis was
stimulated in enrichments containing acetate or H,+CO,. Highest methane formation rates
were detected in the timber incubations (3-4 times higher than in the coal incubations). The
methane-formation processes are complex. Wood-degrading fungi (Ascomycetes and
Basidiomycetes) and a broad spectrum of facultative anaerobic bacteria (a-¢ Proteobacteria,
Bacteroidetes, Tenericutes, Actinobacteria, Chlorobi and Chloroflexi) were detected.
Archaea were represented by members of Methanosarcinales and Crenarcheaota. Thus, the
methanogenic community in the enrichments and unamended samples was dominated by
Methanosarcinales closely related to Methanosarcina barkeri. The formation of methane was
due to acetoclastic methanogenesis in the acetate but also in the H,+CO,; cultures of coal and
timber. The H,+CO, was mainly used by acetogens similar to Pelobacter acetylenicus and
Clostridium species forming acetate as intermediate and providing it to the methanogens.
Although, Methanosarcinales are known to use both, hydrogen as well as acetate, those
identified rather utilized the easier accessible acetate than the thermodynamically more
preferential hydrogen. The microbial communities appeared highly adapted to the low
H, concentrations in the coal mine with acetate as the main precursor of the biogenic

methane.
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1 Introduction

1.1 Coal-mine methane: A feasible energy source and hazard

Worldwide, mine gas emissions of active and abandoned coal mines release substantial
amounts of methane contributing up to seven percent of the global methane formation
(Denman et al. 2007). Mine gas emissions contain between 25 and 45 Mt of methane
(Beck et al. 1993, Clayton et al. 1993, Khalil et al. 1993). The uncontrolled release of
methane from abandoned mines receives current attention owing to its impact on the overall
atmospheric methane budget, and thus for climate change. The mine gas is not only a green
house gas, but also a hazard. Its presence has long been recognized because of explosions that
have occurred (Boyer et al. 1990) and still occur during underground mining. Only recently
has the mine gas in coal beds been recognized as a large untapped energy resource
(Rice 1993). Within the last ten years, more and more countries utilized the methane of the
mine gas for energy production. In Germany, the mine gas from active and abandoned mining
areas is increasingly used for heat and power production (Thielemann et al. 2004), especially
after the introduction of the “renewable energy law” in 2000, which discriminates between
fossil and renewable energy sources with fiscal benefits for the later one. Other reasons for
this trend are an increasing deployment of abandoned mining areas, and a more effective and

sustainable utilization in active mining.

1.2 Methane formation in coal mines

1.2.1 Biogenic or thermogenic methane?

Methane can be generated by different reaction pathways. Each pathway leads to a certain
isotopic signature (carbon and hydrogen isotopes) of the components. An elegant method to
track the process of methanogenesis is based on the analysis of stable isotopes of carbon (C)
and hydrogen (H). Schoell (1980, 1988) and Whiticar (1990, 1996, 1999) identified the
different methane pathways and types using the partitioning of the light and heavy isotopes of
carbon and hydrogen and the resultant isotope signatures. Whiticar (1999) used the
characteristic isotopic differences to develop a classification scheme (CD-diagram), which is

1



1 INTRODUCTION

commonly used for interpretation (Fig. 1). The combination of 813CCH4 and dDcps values
defines the various natural sources of methane. Thermogenic methane is generally enriched
in °C and therefore isotopically heavier (5"°Ccus range is roughly -50%o to -20%o, Fig. 1)
compared with biogenic methane that is depleted in >C (8"°Ccpg4 range is roughly -50%o to
- 110%o, Fig. 1). The biogenic reduction of CO, or reduced carbon substrates (acetate,
methanol or methylated amines) to methane is characterized with a kinetic isotope effect for
carbon which discriminates against >C. Additionally, hydrogen isotope ratios of methane are
helpful to define the type of biogenic methane. Hydrogen isotope effects during
methanogenesis of methylated substrates lead to larger deuterium depletions (0Dcp4 range is
-250%o to -531%0) compared with the CO,-reduction pathway (0Dcp4 range is -170%o0 to -
250%o, Fig. 1, Whiticar 1999). In many coal deposits worldwide, the analysis of the stable
carbon isotopic composition of methane has shown that the produced gas is a mixture that
originates from both, thermogenic and biogenic sources (Smith and Pallasser 1996,

Kotarba 2001, Hosgormez et al. 2002, Thielemann et al. 2004, Tao et al. 2007, Fig. 1)

-110
3 -90
X
@ CO,-reduction
S 70 2
ﬁ oo®Acetate-
e 50 fermentation _
S L~ thermogenic
o
.30
7o)
-10 | ‘ ‘ | ‘ |
-400 -300 -200 -100

0 D-methane (%o)

Figure 1: Isotopic composition of methane formed by biogenic and thermogenic reactions
(Kriiger 2008 modified according to Whiticar 1999). The red circles show the isotopic composition
of methane from different abandoned coal mines in Germany indicating a mixture of biogenic and
thermogenic origin.



1 INTRODUCTION

Thermogenic methane is the result of thermal cracking of sedimentary organic matter
occurring during coalification. The main process took place in Carboniferous time. In Early
Permian time, folding, uplift, and erosion resulted in degassing of the coal beds (Rice 1993).
The pressure from overlying rock and surrounding water cause the mine gas to bond to the
surface of the coal and be absorbed into the solid matrix of the coal as free gas within
micropores and cleats, as dissolved gas in water, as adsorbed gas by micropores, cleats and
within the molecular structure of the coal. Therefore thermogenic methane is a remainder of

geological processes but biogenic methane formation is still going on.

Biogenic methane production is the result of microbial metabolism and the age of its
formation is not known, yet. The microbial communities and activities involved remained
uncharacterized. Interestingly, time series of measurements in coal mines in the Ruhr Basin,
Germany, showed an increasing proportion of the biogenically produced methane during the
last years, indicating a recent origin (Thielemann et al. 2004). As well for the industrial
utilization as for risk assessment it is important to know, whether the methane is currently
produced or has been formed in the geological past. Hints on an ongoing biological formation

of methane were obtained from isotopic analyses over the last years (Thielemann et al. 2004).

1.2.2 Biogenic methane formation

The breakdown of organic matter leading to methanogenesis is performed in a complex series
of processes by diverse microbes, each of which contributes to the partial oxidation of
organic matter. Methanogens belong to the Archaea domain (Woese et al. 1990) and are
obligate anaerobes that metabolize only the final steps of anaerobic degradation of organic
matter utilizing relatively few and simple compounds to obtain energy and cell carbon. Thus,
methanogens rely on bacteria and microbes that successively break down larger molecules
providing acetate and hydrogen as their main substrates. While hydrogen is energetically
favourable, acetate is the quantitatively more available substrate. Some methanogens utilize
acetate which typically accounts for 70% of methane formed in diverse habitats (Zinder
1993). Others are specialists for H,+CO, as methane precursors, while some methanogens,
e.g. those belonging to the Methanosarcina spp., are able to use both acetate as well as H; as

their substrates.
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1.2.3 Coal conversion to methane

First reports about microbial coal conversion have been published by Potter (1908) and
Fischer (1932). Research has been intensified in the 1980's when Fakoussa (1981) showed
first effects on hard coal caused by Pseudomonas strains. Further studies focused on different
solubilization mechanisms of coal (Cohen and Gabriele 1982, Scott et al. 1986, Cohen et al.
1990). A summary of the investigations in this field ranging from 1981 to 1997 has been
reviewed by Fakoussa and Hofrichter (1999). However, most of the research was
concentrated on brown coal and lignite rather on hard coal, and it was focused on aerobic
conditions. Fakoussa (1981, 1988, 1990) showed that some aerobic bacteria and fungi can use
hard coal as the sole carbon source. Deobald and Crawford (1987) showed that the rate
limiting step is the initial solubilization of utilizable substrates that is achieved by microbial
and especially extracellular fungal enzymes. Later studies observed that the presence of
oxygen and water promotes the biodegradation (Fakoussa 1990, Scott and Fleet 1994,
Fakoussa and Hofrichter 1999). While the microbial degradation of coal under aerobic
conditions is well known (Hofrichter and Fakoussa, 2001), only Budwill et al. (2004)
observed higher methane production rates in sewage sludge amended with coal than without,
indicating an anaerobic microbial degradation of fossil organic matter. The presence of
methanogens and methanogenesis is well known for water-flooded oil reservoirs (Edwards
and Grbic-Galic 1994, Nazina et al. 1995), but no comparable microbiological studies are

available concerning coal mines.
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1.3 Abandoned coal mines: Sampling underground

Two sampling campaigns were performed in 2006 and 2007 in sealed compartments of coal
mines closed in the 1960's in the Ruhr Basin of Germany (Fig. 2). After the end of mining,
the mines were closed with several metre thick concrete walls. Only embedded tunnels
(Fig 2A) served as connectors between the sealed compartments (Fig. 2B-G) and the open
coal-mine. The sampling proceeded 800 metres underground. Since there was only marginal
ventilation via small empty pipes or cracks, the atmospheric conditions in these parts were
characterized by 100% air humidity and low oxygen content with less than 4% oxygen.
In situ temperatures were 35-37 °C. Wet floor and walls are covered by biofilms and thick
layers of fungi grow on mine timber (Fig. 2C-E). The mines harbour weathered hard coal
(also called “rock coal”) that belongs to the fat coals according to the German classification
(Thielemann et al. 2004 and references therein, Fig. 2B and H). Besides the coal, large
amounts of timber could be a second possible source for biogenic methane formation within
coal mines. The mine timber (coniferous wood) were used for the construction of mines and
left behind after the end of mining (Fig. 2B). In the sealed mining compartments, weathering
of coal and timber proceed in a suboxic atmosphere. Microbial activity causes oxygen

depletion and creates anoxic zones in the ground, where methane is being formed.

Large pieces of coal and mine timber were collected aseptically and immediately stored
under N, for further processing (Fig. 2H). In situ methane emission rates were measured

using flux chambers exposed in different parts of the mine over coal and timber (Fig. 2F).
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Figure 2: Sampling site. Snap-shots of two sampling campaigns performed in different abandoned
coal mines in the Ruhr Basin, Germany.
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1.4 Thesis outline

The aim of this thesis was to identify ongoing methanogenesis and to unravel the microbial

processes as well as the active microorganisms involved in methane formation.

In order to identify ongoing methanogenesis, we combined geochemical and microbiological
investigations. We have measured in situ methane fluxes and isotopic signatures of methane
and carbon dioxide, and collected samples for microbiological and phylogenetical
investigations. A selective enrichment approach of coal and timber amended with
methanogenic substrates (acetate, H,+CO,, methylamine) was chosen to promote the growth
of methanogens and therefore methanogenesis. In order to ascertain whether the methanogens
were also present in the original coal and timber samples, in situ fluorescence hybridization

(FISH) were applied.

The main aim of the present work was to understand the microbial processes leading to
methane release and to identify the active microorganisms involved in the metabolic network.
Therefore, we have assessed not only the archaeal community composition, but also the
bacterial and fungal communities. Coal and mine timber samples and anaerobic enrichments
were subjected to denaturing gradient gel electrophoresis (DGGE) and quantitative PCR.
Besides the 16S-and 18SrRNA genes, functional key genes that encode for the dissimilatory
sulfate reductase (dsr) and the methyl-coenzyme M reductase (mcr) were analysed. Hints on
the abundance of different groups were derived from quantitative PCR. As a further step,
stable-isotope labeled BC-acetate and 13CO+H2 were fed into microbial communities in
stimulation experiments with coal and timber, respectively. Stable isotopic signatures of the
CH4 and CO; revealed the flux of '*C-label. Direct identification of the '*C-substrate
assimilating microorganisms was obtained via DNA-Stable isotope probing (SIP) coupled to

subsequent quantitative PCR and DGGE analyses.
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About T4 of the global annual methane emissions originate
from coal mining. Alse. mine gas has come inte focus of the power
industry and is being used increasingly for heat and power pro-
duction. In many coal deposits worldwide, stable carbon and hy-
drogen isotopic signatures of methane indicate a mixed thermo-
genic and biogenic crigin. In this study, we have measured in
an abandoned coal mine methane fluxes and isotopic signatures
of methane and carbon diexide, and cellected samples for mi-
crobiological and phylogenetic investigations. Mine timber and
hard coal showed an in-sitw preduction of methane with iso-
topic signatures similar to those of the methane in the mine at-
mosphere. Enrichment cultures amended with mine timber or
hard coal as sole carbon sources formed methane over a period
of nine months. Predominantly, acetoclastic methanogenesis was
stimulated in enrichments containing acetate or hydregen/carbon
dicxide. Molecular technigques revealed that the archaeal commu-
nity in enrichment cultures and wnamended samples was domi-
mated by members of the Methanosareinales. The combined geo-
chemical and microbiological investigations identify microbial
methanogenesis as a recent source of methane in abandoned coal
mines.

Keywords  Coal mine gas, stable isotope fractionation, methanogenic

Archaea, hydrocarbon degradation, diversity, DGGE

INTRODUCTION

Total methane emissions from hard coal mines on a global
scale range betwesn 25 and 45 Mt (Bover etal. 1990; Back et al.
1993; Clavion et al. 1993; Khalil et al. 1993}, contributing up to
seven percent to global methane emissions (Denman et al. 2007),
Within the last 10 vears, more and more countries utilized a part
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of the coal gases for energy production. In Germany, the gas from
active and abandoned mining areas is increasingly used for haat
and power production, especially after the introduction of the
“renewable energy law™ in 2000, which discriminates betwesn
fossil and renewable energy sources with fiscal benafits for the
lattar.

Oither reasons for this trend are an increasing deployment of
abandoned mining areas, and a more effective and sustainable
utilization in active mining. Coal gas can be generated by differ-
ent reaction pathways. Each pathway leads to a certain isotopic
signature (hydrogen and carbon isotopes) of the components.
Schoell (1980, 1988) and Whiticar (1990, 1996) used charac-
teristic isotopic differences to develop a classification scheme,
which is commaonly used for interpratation.

In many coal deposits worldwide, the analysis of the sa-
ble carbon isotopic composition of methans showed that the
produced gas is a mixture that originates from thermogenic
and biogenic sources (Smith and Pallasser 1996; Kotarba 2001;
Hosgtrmez et al. 2002; Thielemann et al. 2004; Tao et al.
2007). However, the time point for the formation of the lat-
ter fraction is not known, and the microbial communities and
mechanisms involved remained uncharacterised. Interestingly,
time series of measurements in coal mines in the Ruhr Basin,
Germarny, showed an increasing proportion of the biogenic, mi-
crobially produced methane during the last vears, indicating a
racent origin (Thielemann et al. 2004). As well for the indos-
trial utilization as for risk assessment it is important to know,
whether the methane is currently produced or has been formed
in the geological past. Hints on a recent biological formation
of methane were obtained from isotopic analysas over the last
vears (Thielamann et al. 2004,

First reports about microbial coal conversion have been pob-
lished by Potter (1908) and Fischer (1932). REesearch has been
intensified in the 1980s (Fakoussa 1981; Cohen and Gabriele
1982}, and the work in this field has been reviewed previously
(Hofrichter and Fakoussa 2001}, Most of the research was con-
centrated on brown coal and lignite rather than on hard coal, and
it was focussed on asrobic conditions. Fakoussa (1981, 1988,
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19907 showed that some aerobic bacteria and fungi can use hard
coal as the sole carbon source.

While the microbial degradation of coal under aerobic con-
ditions is well known (Hofrichter and Fakoussa 2001 ), only re-
cently Budwill et al. (2004) observed higher methangs produc-
tion rates in sewage sludge amended with coal than without,
indicating an anasrobic microbial degradation of fossil organic
matter. A study by Zengler et al. (1999) showed the conver-
sion of hexadecane to methane by a microbial enrichment cul-
ture from a freshwater ditch. The presence of methanogens and
methanogenesis is well known for water-flooded oil reservoirs
(Edwards and Grbic-Galic 1994; Nazina et al. 1995}, but no re-
spective microbiological studies are available concerning coal
mines.

Therefore, in this study we measured in sty isotopic signa-
tures and methane Auxes in a coal mine in the Ruhr Basin, which
had been abandoned and sealed in the 1960s. Furthermore, we
collected samples for microbiological and phylogenatic imvesti-
gations on methane production and the involved microbial popu-
lations to find indications for the presence and intensity of recent
methanogenesis.

MATERIAL AND METHODS

Sampling

Samples were collected in Febroary 2006 and May 2007 in
a sedled part of a coal ming closad in the 1960°s. Large pieces
of mine timber and coal as well as H:O were collected and
immediately stored under Mz, fn sitw temperatures were 35—
36°C with 100 % humidity. Flux chambers made of Plexiglas,
200 20 x 20 cm, were exposed in different parts of the mine
over coal, timber or control areas to measure methane emission
rates. Gas samples were taken through a saptum regularly in
15 minutes intervals over 1-2 h and stored on saturated NaCl
until analysis for CHy, COy, and stable isotopes as previously
described by Kriger et al. (2001).

Enrichment Cultures

Processing of coal, timber and water samples was done in
an anasrobic chamber under M2 atmosphere. Samples were ho-
mogenized and distributed in hungate tubes containing 5 ml of
mineral medinm {Widdel and Bak 1992) with a salinity of 15
P5SU, according to én sitw values. In controls, 10 mM BES (2-
Bromoeethanesulfonate ) were added to detect abiotic degassing
wvia inhibiting methanogenesis. In stimulation experiments either
10 mM acetate or Hz/CO; (30205 was added. All incubations
were carrigd out at laast in triplicates. The increass of mathana
in the headspace as well as carbon stable isotopes of methane
and carbon dioxide produced were continuously measured over
a period of 9 months and analysad as previously described by
Eriger et al. (2001).

M. KRUGER ET AL.

DMNA Extraction and PCR Amplification

Genomic DMA was extracted from 0.5 g of coal and mine-
timber samples using the FastDMA® Spin Kit (Q-BIOgene,
Carlsbad, CA), according to the manufacturer’s instructions. A
nested PCE was used in order to investigate the archagal com-
munity composition as described by Vetriani et al. (1999). The
domain-specific primer pair 5-D-Arch-0025-a-5-17 (5'-CTG
GTT GAT CCT GCC AG-3) and 5-*-Univ-1517-a-4-21 (5'-
ACG GCT ACC TTG TTA CCA CTT-3") was used for the am-
plification of the almost-complete archasal 165 rRMNA gene, For
denaturing gradient gel electrophoresis (DGGE), a 550-bp frag-
ment of the archaeal 165 rEMA gene was amplified by using
the primers 5-D-Arch-0344-a-5-20 (3-ACG GGG CGC AGC
AGGOGC GA-3)and 907r (3-CCG TCAATTCCTTTG AGT
TT-3"). All PCRs were checked by electrophoresis ona 1.5%
(witfvol) as described previously (Wilms et al. 2006).

Denaturing Gradient Gel Hectrophoresis (DGGE)
Analysis

PCR amplicons and loading buffer (40% [wit/vol] glvcerol,
a0% [wifvol] 1w« Tris-acetate-EDTA [TAE], and bromphenol
blue ) were mixed in a ratioof 1:2. DGGE was performed using
an INGENYphorU-2 system (Ingeny, Goes, The Metherlands).
PCE products of the 165 rEMNA gene were loaded onto poly-
acrylamide gels (6% [wifvol]) in | = TAE (40 mmol~! Tris,
20 mmol™ acetate, | mmol™" EDTA), with a denaturing gra-
dient adjusted from 30% o B0% (with 100% denaturant comwe-
sponding to7 M urea and 405 formamide). Electrophoresis was
accomplished at a constant voltage of 100V and a temperaturs
of 60°C for 20 h. After electrophoresis, the gels were stained
for 2hin | = SybrGold solution (Molecolar Probes, Engene,
Creg.)in | = TAE, washed for 20 min with distilled water, and
documented using a digital imaging system (BioDocAnalyze;
Biometra, Gottingen, Germary .

Sequence Analysis

DGGE bands were excised for sequencing and treatad as de-
acribed by Del Panno et al. (2005 ). PCR products ware purified
by using the QlAquick PCR purification Kit (Quiagen GmbH,
Hilden, Germarry ) and eluted in 30wl of PCR. water (Ampuwa,
Fresenius, Bad Homburg, Germany). DNA yields were quan-
tified Auorometricallv in a microtiterplate reader (FLUOstar
Orptima, BMG Labtechnologias, Offenburg, Germany ) using a
12200 diluted PicoGreen reagent (Molecular Probes, Eugene,
OR) as described in detail by Wilms et al. (2007). The 165
rENA gene sequences were obtained by cyvcle sequencing us-
ing the DMNA Sequencing System 4000 (Li-COR Inc., Lincoln,
Meb.) with the IRDye™ 800-labeled primer 907r and the DYE-
namic direct cycle sequencing kit (Amersham Biosciences, Lit-
tle Chalfont, UK) in accordance with the manufacturar’s instnic-
tions. Sequences were compared to those in GenBank using
the BLAST function of the Mational Center for Biotechnology
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Information server and have been deposited in the GenBank nu-
cleotide sequence database under the accession No. AMES0093-
AMBEBSO0104,

Fluorescence in situ Hybridization (FISH)

A specific detection of Archaea was carried out by FISH
as described in detail by Amann et al. (1990) and Pern-
thaler et al. (2001} using the general probe Arch@15 (5'-
GTG CTC CCC CGC CAA TTC CT-3%). The probe was
svnthesized and labeled with the sulfoindocvanine dve Cy 3
(Biomers, Ulm, Germany). Briefly, cells of the sopernatant of
coal or mine timber incubations were fixed in 4% paraformalde-
hyde (2% [wol/vol] final concentration) for 3h at 4*C. Fixed
cells were stored at —20°C until further processing. Glas
slides with ten separate hvbridization wells per slide were
used for the hybridization. The slides were treated with a
gelatine solution (0.1% gelatine, 0.01% chromivm potassiom
sulfate).

Samples of 4 jl were spread on each well and dried on air.
A moisture chamber equilibrated with 5 M sodium chloride
was used for the hybridization. A 7 pl sample of hybridiza-
tion mixture containing 35% formamide, 5 M sodiom chlo-
ride, | M Tris/HCL and 1% SDS was applied to each well.
After 30 min of incubation at the hybridization temperature of
46°C, 50 ng of the fluorescent probe was added. Hybridiza-
ticn was carried out for 2 h at 46°C. The hvbridization buffer

37

was removed by flushing the slide with wash solution (5 M
sodium chloride, 1| M TristHCL, 1% SDS, 0.05 M EDTA). The
alides were incubated in wash solution for 20 min at 48°C, faol-
lowed by thorough rinsing with distilled water and stored in the
dark.

RESULTS AND DISCUSSION

To test the hvpothesis that the strong biogenic component
of mine gas in abandoned coal mines has a recent origin,
two sampling campaigns were performed in the Ruhr Basin,
Germary, in a coal mine that had been closed in the 1960z,
Mine water collected from small ditches and pools sometimes
also containing mine timber or coal pieces showed an al-
most nentral pH and slightly elevated carbonate and salt con-
centrations (Table 1). The algc-signm‘ure of methane in the
mine atmosphers was —45.6 %e (Table 2), indicating a mixture
of biogenic and thermogenic gas (Whiticar and Snowdon
1999).

Gas emissions were measuredin sitw in galleries and tun-
nels with Aux chambers that were placed over residual pieces
of mine timber or the weathered coal, the only possible sources
for recent methane formation (Figure 1). The 5*C-values of the
emitted methane varied from 39.8 to 49.5%e in the gas phase
collected over different areas with coal or mine timber, respec-
tively. Methane emission rates accumulated to 12 and 42 gm~—?
a™', being up to 1000-fold lower than e.g., in wetlands or rice

TABLE 1
Mine water chemistry.

General parameters

Conductivity (pS/cm) (25°C) 3090 Temperature (“C) 24
pH-value T.60 Carbon density (mmaol,/T) T.la
Complete density (mmold) 379 Edissolved ions (mg/d) 2657
Cations (mgl) Anions (mg/)
KT 17.8 C1™ 133
Mat 647 S0y 851
Mgtt 50 HCO, BT5
Ca™t 69.6 BO3 10
Lit 0.39 Mon-ionic substances (mg/l)
Srtt 25 50, 153
Inorganic traces (g gfl)
P03 160 Cu <5
Al 10 Fb =30
MHy 30 Cd <2
Ba 20 Faill) 37
Ti e | n 3
Br- 300 Cr =5
Co =5 Mn 41
Mi =5 As =20
Be =05 Sc =]
v =5
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TAELE 2
Concentration, stable carbon and hydrogen isotopic composition of methane and carbon dioxide collected in the atmosphere of
an abandoned coal mine, taken from flux chamber measurements at the same location®, or produced in laboratory incubations of
coal and mine timber samples at the end of incubations (mean &£ SE, n = 3-5).

CHy (%) SMCH, (%) COy (%) S3C0, (T
Mine atmosphers 2-5 —45.6 £ 432 0.5-1.2 — 163 £ 1.07
Flux chamber —45.0 £ 2.15 —19.1 £ 1.07
Coal incubation —474 £ 131 — 161 £0.73
Mine timber incubation —558 £ 325 —19.7T £ 0.43

*Measured before ventilation and entering of the mine.

fields (Kriger et al. 2001; Heyer et al. 2002). Control sites in
the mine without coal or timber showed no methane emissions.
In none of the gas samples collected underground the potential
substrate hydrogen was detected.

Samples of timber, coal and mine water were collectad aszpti-
cally and incubated anaerobically under in sitw conditions with-
out substrates. While no methane formation was observed in
water samples, all mine timber incubations showed a constant
and long-term (=% months) formation of methane (Figure 2).
Surprisingly, methanogenesis was also found in several incuba-
tions with hard coal samples as sole source of carbon and energy.
Mo methane {or hydrogen) release was observed of control inco-
bations with the methanogenic inhibitor BES (2Bromoethane-
sulphonate), thus excluding an abiotic degassing of adsorbed
methana from the incubated samples. Methane production rates
were with 0.22 £ 0,13 and 1.24 £ 0.51 ug g;l, weight d~! for coal
and mine timber in a similar rangz as observed for example in
freshwater lake sediments (Chan et al. 2005; Eller at al. 2005).

The stable carbon isotopic signatures of the produced
methane were with —47 .4 for coal and —55.8%. for timber in-
cubations in a similar range as those in the gas samples col-
lected in sitw in the closad mine (Table 2). The more positive

00— T — T
- Goall
2804—A—Coal2 .
1—o— Timbar-1
2607, - Timber-2 ]
- 240 4—m— Contral {sand) i T
g 2204 / !#__P_,,..:-, i
+ ] T A
2004 : i
5 1 T
1804 & __— 7 )
1 % o
IED: = el ——e - ]
140+— T T T T T T
0 10 20 30 40 50 60
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FIG, 1. In sim methane emissions over time. Methane concentrations were
measured on-gite in Aux chambers that wers mounted above coal residues, dif-
ferent timber samples and a sandy control site,
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§13C-signatures in the mine atmosphere show a still ongoing
contribution of desorbing thermogenic fossil methane, probably
originating from other mine regions, to the overall signal.

In the absence of oxygen and other alternative electron ac-
ceptors, like iron(III), nitrate or sulfate, methanogenesis is the
terminal electron-accepting process. We investigated which of
the two dominant pathways, the hydrogenctrophic or the acteo-
clastic, is important for coal and timber degradation. The addi-
tion of acetate to the incubations lead to a strong and relatively

1800 D tllcual salmple I I I A ]
16004 o, pEs )
5 M0 s ih 1
g 1200 —=—+ Acetate ]
B 10004
= 800
S &0o]
T 400
200
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FIG. 2. Microbial methans fommation in long-term incubations from an aban-
doned coal mine. a, coal and b, mine timber samples. (mean £ standard emror,

n= 23
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rapid stimulation of methane production, while the effect of
hydrogen was less pronounced (Figure 2). Together with the
comparably positive stable carbon isotopic signature of the pro-
duced methane, this indicates that acetate might be a central
intermediate in the degradation processas of timber and coal.

In the control incubations with BES but also in unamended
cultures, small amounts of both, acetate and hydrogen, were
detected (data not shown). Low concentrations of acetate and
hydrogen agree with their proposed role as key intermediates
during methanogenasis from natural organic compounds or hy-
drocarbons (Schink 1997; Zengler et al. 1999). Decomposition
of such compounds by anaerobic bacteria produces acetate and
hydrogen, which are consumead by methanogenic Archaea and
hence maintained at very low concentrations.

Microscopic screening showed a large variety of microbial
cells in the different enrichment cultures. Especially the mine
timber incubations were characterised by complex aggrepates
of timber particles with differently shaped cells (Figure 3a),
while the hard coal incubations were dominated by coceoid cells.
The molecular analysis of the original samples and of enrich-
ment cultures showed the presence of a diverse archasal com-
munity. Fluorescence-in-situ-hybridisation (FISH) microscopy
with Archasa-specific probes reflectad the different morpholog-
ical types (Figure 3b). Furthermore, methanogenic Archasa that
were associated with mine timber could directly be visualised
using their typical antofluorescence at 420 nm (Figure 3c).

Micmscopic analysis of methanogenic Archaea in hard coal and mine timber samples (scale bars = 5 pm). a, Mine timber particle (red) colonised by
differently shaped microorganisms (Sybr Green Dstaining). b, Cocooid and rod-shaped Archaga from an enrichment culture amended with mine timber and acetate
(Auorescence in sitn hybridisation, FISH). ¢, Methanogenic rod-shaped cell (autofluorescencel d, Merfasosaata-like cells from an acetate-enrichment (phase

contrast). e, Metharosarciag-like cells from an acetate-enrichment (Sybr Green 1 smining ) £, Methane bubbles formed around methanogenic colonies (tiny dots)
in dezp agar dilution series.

FIG. 3.

il

Az expectad from the more rapid methane formation in the
incubations with acetate (Figure 2), a dominance of acetoclas-
tic methanogens was found by DGGE (denaturing gradient gel
electrophoresish and subsequent 165 TRNA gene sequancing in
unamended enrichments and in the acetate-stimulated cultures.
Different acetoclastic members of the Merhasosarcinales wera
detected (Table 3), closaly related to Merhanosarcing species
(M. barkeri, M. lacusiris and M. siciliae) and to Merhanosaera
harundinaceae. Typical cell forms of these species were also
present in the enrichment caltures (Figure 3c-2). The results of
the community analysis confirmed that acetate is a central inter-
mediate in recent mine gas formation.

Hydrogenotrophic and methvlotrophic methanogans closely
related to Methanolobus tayiorii were selectively enriched in
specifically designed culture media. However, they were nai-
ther detected by DMGGE in the original coal or and timber
samples nor in the wnamended enrichments and probably
play a minor role én site. Surprisingly, a presently uncultured
member of the Crenarcheota belonging to the Thermoproted
subgroup was found in the unamended and the hydrogen-
stimulated enrichments. This subgroup was previously detectad
in petroleum reservoirs (Li et al. 2007) and a subsurface
gold mineg (Monoura et al. 2005), and is known to exhibit a
chemoorganotrophic lifestyle, to reduce sulfur compounds, or
to utilize hydrogen. Isolation of the methanogenic key playvers
in mine gas formation is currently in progress. The first colonies
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TABLE 3
Phylopenatic affiliation of DGGE bands after amplification of the archasal 165 TRNA gene
Mine timber incubations
Coal incubations

Substrate Closast relative Sequence similarity () Closest relative Sequence similarity

Unamendad  Methanosarcing barkeri 96 Mrethanosarcing barkeri 96
Methanosarcina sicilice 99
Methanosaeta harundinaceae 98
Uncultured Crenarchasota 96

HzAC0, Methanosarcing barkeri 98 Methanolobus taylorii 97
Mrethanosaeta harundinacear 93
Uncultured Crenarchasota 97

Acetate Merhanesarcing lacustris 97 Methanosarcinag barkeri 99
Methanosaeta harundinaceae 98

showing gas production were grown in deep agar dilution series
(Figura 3f).

In this study, for the first time the presence and activity of
methanogenic Archaea in abandoned coal mines and the con-
wversion of hard coal and the mine timber (o methane could be
demonstrated. Since hard coal is effectively sterilised due to the
high temperatures during its formation, the best explanation for
the pressnce of these diverse microbial communities is a re-
colonisation introduced by the anthropogenic mining activities.
Possibly, also the transport of microbes via water in faults might
provide a further source of microbial life, as postulated e.g. for
gold mines (Lollar et al. 2006).

However, methanogenesis is only the terminal step in the
degradation of complex organic substrates. Especially for mine
timber it is expected, that a close interaction of Fungi and Bacte-
ria are mediating the first decompaositon of polymeric substances
to provide the carbon sources for the methanogenic Archasa.
Surprisingly, besides the mine timber also weathered hard coal
wias degraded by these microbial consortia, prowviding another
possibly long-term source of methana in the mine gas. However,
even after the end of the mining activitias oxveen is remaining
for a long time in the system. This residoal oxygen probably
initiates weathering of the coal and timber, thus facilitating a
subsaquent microbial degradation under anoxic conditions.

In conclusion, the stable isotope analysis indicated a strong
biogenic componentof coal-mine methane originating from ace-
toclastic methanogenesis. This was confirmed by the fast stim-
ulation of methane formation in acetate-amended enrichment
culturas. The respective acetoclastic Archasa were identified by
the detailed microscopical and moelecular biological analysis.
The predominance of these microorganisms and the ongoing
methane formation in the unamended hard coal and mine timber
incubations furthermore indicate that acetoclastic methano gene-
0% is an important process i1 site, whichis in contrast to previous
observations.

In gas samples collected aboveground at different mining
plants also in the Ruhr Basin, Thielemann et al. (2004) observad
similar '*C- but 5D-values between —190 and —260%. for the
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mine gas methane, which they explained by the contribution
of hydrogenctrophic methanogens. Similar observations were
made in gas-isotopic studies at other mining areas (Smith and
Pallasser 1996; Kotarba 2001). However, the underlying mi-
crobiclogy and environmental conditions might be completely
different from those at the presant study site.

Cwerall, our new results support the assumption that aban-
doned coal reservoirs have a potential to supply methans gas
for energy production over extendad time scales. The world-
wide increased mining activity will go along with an in-
creased coal weathering and the formation of biogenic methane.
On the other hand, the uncontrolled release of methane from
abandoned mines might become even more important for the
overall atmospheric budget of methane, and thus for climate
change.
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ABSTRACT

Worldwide, abandoned coal mines release substantial amounts of methane which is largely of
biogenic origin. The aim of this study was to understand the microbial processes involved in
mine-gas formation. Therefore, coal and timber samples and anaerobic enrichments from two
abandoned coal mines in Germany were subjected to DGGE analyses and quantitative PCR.
The primers used were specific for Bacteria, Archaea, Fungi, and the key functional genes for
sulfate reduction (dsrA) and methanogenesis (MCrA). A broad spectrum of facultative anaerobic
bacteria and acetogens belonging to all five groups (a-¢) of the Proteobacteria, as well as the
Bacteroidetes, Tenericutes, Actinobacteria, Chlorobi and Chloroflexi were detected. Archaea
were represented by acetoclastic Methanosarcinales and Crenarchaeota with an unknown
metabolism. Fungi formed thick biofilms particularly on timber, and were identified as typical
wood degraders belonging to the Ascomycetes and Basidiomycetes. The community analysis as
well as the environmental conditions and the metabolites detected in a previous study are
consistent with the following scenario of methane release: Weathering of coal and timber is
initiated by wood-degrading Fungi and Bacteria under a suboxic atmosphere. In the lower,
oxygen-depleted layers Fungi and Bacteria perform incomplete oxidation and release reduced
substrates which can be channeled into methanogenesis. Acetate appeared to be the main

precursor of the biogenic methane in the investigated coal mines.

INTRODUCTION

Gas emissions of active and abandoned coal mines account for seven percent of the globally
released methane (Denman et al. 2007). Mine gas is not only a possible hazard but also an
energy source, which is increasingly coming into focus for industrial utilization worldwide.
Stable carbon and hydrogen isotopic signatures indicate that methane in mine-gas in many
regions has a mixed thermogenic and biogenic origin (Hosgormez et al. 2002; Thielemann et
al. 2004; Tao et al. 2007). Thermogenic methane is a remainder of geological processes.

Biogenic methane formation is still going on.

In a recent study we have measured methane formation rates and detected methanogenic
archaea (Kriiger et al. 2008). However, the communities and metabolic pathways involved
remained unknown. Generally, coal is not a good microbial substrate and only partially
degradable. The rate-limiting step is the initial solubilisation of utilisable substrates that is

achieved by microbial and especially extracellular fungal enzymes (Deobald and Crawford
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1987). The presence of oxygen and water promotes the biodegradation (Fakoussa 1990; Scott
andFleet 1994; Fakoussa and Hofrichter 1999; Strapoc et al. 2008a). Another possible source for
biogenic methane formation within coal mines are large amounts of timber that were used for the
construction of mines and left behind after the end of mining. In the sealed mining compartments,
weathering of coal and timber proceed in a suboxic atmosphere at temperatures around 37°C and at
100 % humidity. Wet floor and walls are covered by biofilms. Thick layers of fungi grow on mine
timber (Figure 1a-b). Microbial activity causes oxygen depletion and creates anoxic zones in the
ground, where methane is being formed. Methanogens rely on syntrophic organisms catalysing the
initial decomposition steps and providing acetate and hydrogen as their main substrates. Some
methanogens utilise acetate which typically accounts for 70% of methane formed in diverse habitats
(Zinder 1993). Others are specialists for H, (+ CO,) as methane precursors, while some methanogens

belonging to the genus Methanosarcina are able to use both acetate as well as H, as their substrates.

S

FIG. 1: Archaea, Bacteria and fungi in the coal mines. (a, b) Mine timber overgrown by fungi. (c, d)
Fungal isolates (Ascomycetes and Basidiomycetes). (e) Biofilm from mine timber (Sybr Green I
staining). (f, g) Archaea with vesicles (arrows) from biofilm (Transmission Electron Microscopy).
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In a recent study on the microbial communities in a coal mine, we have shown the presence
and activity of methanogenic archaea converting acetate to methane (Kriiger et al. 2008).
Acetate was found to accumulate in assays where methanogens were inhibited by 2-
bromoethanesulfonate (BES). This suggested acetoclastic methanogenesis to be the dominant
pathway. In contrast, earlier investigations reported that methanogenesis is mainly driven by
H,-utilizing archaea (Flores 2008; Strapoc et al. 2008b). However, these studies refer to water

samples collected aboveground, and not to coal or timber samples, directly.

In the present investigation we have assessed not only the archaeal community composition,
but also the bacterial and fungal communities. Besides the 16S- and 18SrRNA genes,
functional key genes that encode for the dissimilatory sulfate reductase (dsr) and the methyl-
coenzyme M reductase (mcr) were analysed. Hints on the importance of different groups were
derived from quantitative PCR. The main objective was not the phylogenetic assessment but to
understand the process of methane formation from coal and timber by linking the physiological

features of the detected community members.

MATERIAL AND METHODS
Sample collection and enrichment cultures

Samples were collected in February 2006 and May 2007 in sealed compartments of coal mines
closed in the 1960's. The mines harbour weathered hard coal (also called “rock coal”)
belonging to the fat coals according to the German classification (Thielemann et al. 2004 and
references therein). Large pieces of coal (2-15 cm) and mine timber (2-10 cm) were collected
aseptically in glass bottles that were immediately flushed with N, and stored at 4 °C until
further processing. In situ temperatures were 35-37 °C with 100 % air humidity. Processing of
coal and mine timber samples was done in an anaerobic chamber under nitrogen atmosphere to
prevent oxidation. Coal and timber samples (1 g) were homogenized and distributed in hungate
tubes containing 10 mL of sulfate-free mineral medium (Widdel and Bak 1992) with a salinity
of 15 PSU, according to in situ values of mine water. Controls were supplemented with 10 mM
2-bromoethanesulfonate (BES) to inhibit methanogenesis. Enrichment cultures were amended

with either 10 mM acetate, H,/CO, (80/20), 5 mM methanol, or 10 mM trimethylamine. All
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incubations were carried out at least in triplicate. The increase of methane in the headspace as
well as the stable isotopes of methane and carbon dioxide produced were continuously
monitored over 9 months and analyzed by gas chromatography/mass spectrometry (GC/MS) as

described previously by Kriiger et al. (2001 and 2008).

DNA extraction and amplification

Genomic DNA from 0.5g and 10 g (wet weight) of coal and mine-timber samples,
respectively, was obtained either by freeze-thawing of cell pellets or by using the FastDNA"
Spin Kit (Q-BIOgene, Carlsbad, CA, USA) and the UltraClean Soil DNA Kit Mega Prep
(MO BIO Laboratories, Inc., Carlsbad, CA, USA), according to the manufacturer's instructions.
The DNA was concentrated by ethanol precipitation, and dissolved in either 30 uL or 100 pL
of sterile distilled water. The extracted DNA was used as the target for polymerase chain
reaction (PCR). For denaturing gradient gel electrophoresis (DGGE), a 550-bp fragment of the
archaeal 16S rRNA gene was amplified by using the primers S-D-Arch-GC-0344-a-S-20
(5-ACG GGG CGC AGC AGG CGC GA-3") and 907r (5-CCG TCA ATT CCT TTG
AGT TT-3"). For the analysis of bacterial composition, the primers GC357f (5'-CCT ACG
GGA GGC AGC AG-3") and 907r were used to amplify partial 16S rRNA genes (Muyzer et al.
1995). For the amplification of the fungal 18S rRNA gene and the fungal ITS gene, the primer
pairs EF4 (5°-GGA AGG GRT GTA TTT ATT AG-3")/EF3 (5°-TCC TCT AAA TGA CCA
AGT TTG-3"), EF4/NS3 (5'-GGC TGC TGG CAC CAG ACT TGC-3") and ITSIF (5°-CTT
GGT CAT TTA GAG GAA GTA-3")/ITS4 (5'- CGC CGT TAC TGG GGC AAT CCC TG-3")
were used (Larena et al. 1999; Smit et al. 1999; Brodie et al. 2003). At the 5'-end of each
forward primer, an additional 40-nucleotide GC-rich sequence (GC-clamp) was added to obtain
a stable melting point of the DNA fragments in the DGGE according to Muyzer et al. (1993).
PCR amplification was performed using an Eppendorf Thermal Cycler system (Mastercycler,
Eppendorf, Hamburg, Germany) as follows: 2 uL (1-100 ng) of template DNA, 1 U of Taq
DNA polymerase, the manufacturers'recommended buffer as supplied with the polymerase
enzyme, 0.2 mM dNTP's, 100 pM of each of the appropriate primers, and 10 mM of BSA were
adjusted to a total volume of 50 pL with PCR water (Ampuware, Fresenius, Bad Homburg,
Germany). The PCR-program included an initial denaturation step for 4 min at 96 °C. For the
PCR of archaeal DNA, a first cycle step was carried out for 30 s at 96 °C; 1 min at 48 °C; and
1 min at 72 °C. For amplification of bacterial DNA, 30 s at 94 °C; 45 s at 55 °C; and 1 min at
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72 °C was used. For PCR of the fungal 18S rRNA and the ITS region the following
thermocycling pattern was used: 1 min at 94°C, 1 min at 50°C (18S rRNA) and 55°C (ITS),
and 2 min at 72°C. The total number of cycles was 35. Primer extension was carried out for
10 min at 72 °C. Aliquots (5 pL) of the PCR products were analyzed by agarose gel
electrophoresis in 1.5% (wt/vol) agarose gels and ethidium bromide staining (0.8 ng mL™) for

20 min on a UV transilluminator as described previously (Wilms et al. 2007).

Quantitative PCR of Bacteria and Archaea based on 16S rRNA gene copy numbers

DNA standards for quantitative (real-time) PCR were prepared as described by Wilms et al.
(2007) and Engelen et al. (2008). Briefly, the bacterial 16S rRNA gene of Desulfovibrio
vulgaris'(DSM 644) and the archaeal 16S rRNA gene of Methanosarcina barkeri'(DSM 800)
were amplified using the bacterial primer pair 8f and 1492r (Lane 1991) or the domain specific
primer set S-D-Arch-0025-a-S-17 and S-*-Univ-1517-a-A-21 (Vetriani et al. 1999). The PCR
amplicons were purified using the Quia quick purification kit (Quiagen, Hilden, Germany) in
accordance with the manufacturer's instructions and quantified using PicoGreen staining as
described by Wilms et al. (2007). The purified PCR products were diluted from 1:10° to 1:10"

and served as a target for the qPCR standard curves.

Quantitative PCR was used to determine bacterial and archaeal abundances in the original
samples. Bacterial and archaeal targets were measured in at least three different dilutions of
DNA extracts (1:10 to 1:1000) and in triplicate. Primer sets specific for different phylogenetic
domains and functional genes were used according to Wilms et al. (2007). For the quantitative
PCR assay of Crenarchaea and Methanosarcinales, the specific primer sets Cren28F (5'-AAT
CCG GTT GAT CCT GCC GGA CC-3")/ Cren457R (5°-TTG CCC CCC GCT TAT TCS CCC
G-3") (Schleper et al. 1997) and MSL812F (5-GTA AAC GAT RYT CGC TAG GT-3%) /
MSLI1159R (5-GGT CCC CAC AGW GTA CC-3") (Shin et al. 2008) were used, respectively.
The qPCR mixtures contained 12.5 pL of the premix solution of a DyNAmo HS SyberGreen
qPCR Kit (New England Biolabs, Inc., Hitchin, UK), 1 uL of each primer and 10 pL standard
or DNA extract as a template in a final reaction volume of 25 pL. The PCR was carried out in a
Rotor-Gene-3000 cycler (Corbett Research, Sydney, Australia). After initial denaturation at
95°C for 15 min, 50 cycles followed. Each cycle consisted of denaturation for 10 s at 94°C,
annealing for 20s at 54°C for Bacteria and 48°C for Archaea, elongation for 30 s at 72°C, and
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fluorescence measurement at 72 °C. To check amplification specificity, fluorescence was also
measured at the end of each cycle for 20 s at 82°C for Bacteria and 80°C for Archaea. After
the last cycle, a melting curve was recorded by increasing the temperature from 50°C to 99°C
(1°C every 10 s). The numbers of bacterial and archaeal 16S rRNA targets were calculated
from the DNA concentrations according to Siiss et al. (2006). Cell numbers of Archaea and
Bacteria were estimated using an average 16S rRNA copy number of 4.1 and 1.5, respectively

(http://rrndb.cme.msu.edu/).

Denaturing gradient gel electrophoresis (DGGE) analysis

DGGE was performed using an INGENYphorU-2 system (Ingeny, Goes, The Netherlands).
PCR products and loading buffer (40% [wt/vol] glycerol, 60% [wt/vol] 1x Tris-acetate-EDTA
[TAE], and bromphenol blue) were mixed in a ratio of 1:2. The PCR amplicons were applied
directly onto 6% (wt/vol) polyacrylamide gels with a linear gradient of 30-80% denaturant for
archaeal and 50-70% for bacterial PCR products (with 100% denaturant corresponding to 7 M
urea and 40% [vol/vol] formamide). Electrophoresis was accomplished in 1XTAE buffer (40
mM Tris-acetate [pH 7.4], 20 mM sodium acetate, 1 mM Na,EDTA), at a constant 100 V and a
temperature of 60°C for 20 h. After electrophoresis, the gels were stained for 2 h in
1xSybrGold solution (Molecular Probes, Eugene, USA) in 1 x TAE and washed for 20 min
with distilled water. The gel was digitized using the digital imaging-system (BioDocAnalyze;

Biometra, Gottingen, Germany) with UV transillumination (302 nm).

Reamplification and sequencing of DGGE bands

Denaturant gradient gel electrophoresis bands were excised for sequencing using a sterile
scalpel and treated as described by Del Panno et al. (2005). Briefly, DGGE bands were
transferred into 50 uL of PCR water and incubated for 48 h at 4 °C. For reamplification, 2 uL.
of the supernatant was taken as a template using the same reaction mix as described above with
a final volume of 50 pL. The PCR protocol was adjusted for the reamplification: 96 °C for 30
s, 48 °C for 1 min, and 72 °C for 1 min for the reamplification of the archaeal DNA and 94 °C
for 30 s, 55 °C for 45 s, 72 °C for 1 min for the reamplification of the bacterial DNA. The total

number of cycles was 25 and the final elongation was carried out at 72 °C for 10 min. Some
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amplicons were loaded onto a second DGGE gel for purification and were excised again. The
bands were treated as described above and served as a target for sequencing the amplified
fragments of the 16S rRNA genes. PCR products were purified by using the QIAquick PCR
purification Kit (Quiagen GmbH) and eluted in 30 pL of PCR water. DNA yields were
estimated fluorometrically in a microtiterplate reader (FLUOstar Optima, BMG
Labtechnologies, Offenburg, Germany) using a 1:200 diluted PicoGreen reagent according to a
modified manufacturer's protocol (Molecular Probes, Eugene, USA) as described in detail by
Wilms et al. (2007). Only one tenth part of each volume and 1 pL of the extracted DNA and
lambda-DNA (in concentrations ranging from 100 ng pL" to 1 ng pL™) were used. The 16S
rRNA gene sequences were obtained by cycle sequencing using the DNA Sequencing System
4000 (Li-COR Inc., Lincoln, NE, USA) with the IRDyeTMSOO—labeled primer 907r and the
DYEnamic direct cycle sequencing kit (Amersham Biosciences, Little Chalfont, UK) in
accordance with the manufacturer's instructions. Sequences were compared to those in
GenBank using the BLAST tool of the National Center for Biotechnology Information server
(Altschul et al. 1997) and have been deposited in the GenBank nucleotide sequence database
under the Accession Nos. FN13616-FN13723.

RESULTS
Potential fermenters dominate the bacterial community

DGGE fingerprints from original samples and cultures showed that both mines harboured
similar bacterial communities with differences between coal and timber samples (Figure 2,
Table 1). A total of 48 bacterial 16S rRNA gene sequences were obtained (Table 1). Most
sequences were derived from Gram-negative bacteria of all five groups (o-g¢) of the
Proteobacteria, the Bacteroidetes/Chlorobi group and the Chloroflexi. The detected Gram-

positive bacteria exclusively belonged to the Firmicutes.

Besides the phylogenetic analysis we made a physiological assessment of the closest
cultured relatives of the detected groups. The majority of the microbial community in both,
coal and timber was represented by different bacterial populations that were related to

fermenting bacteria (Table 1). Many of the relatives are capable of fermenting sugars,
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including mono- and polysaccharides (cellulose, chitin). These potential fermenters belonged
to the Proteobacteria (Thalassobaculum, Janthinobacterium sp.) and Firmicutes (Clostridium,
Gracilibacter, Acholeplasma sp.). Another group is capable of utilising hydrocarbons
represented by sequences of Bacteroidetes/Chlorobi group (Pelobacter sp.) and some

Proteobacteria (Hydrogenophaga, Pedobacter, Pseudoaminobacter sp.).

Furthermore, sequences were derived from nitrate-, sulfate- or sulfur reducers. The majority
of them was obtained from timber samples and belonged to Proteobacteria capable of using
acetate as electron donor. In coal samples, only one sequence affiliated with a nitrate reducer
with nitrogen-fixing abilities (Azoarcus sp.) and one from a sulfur reducer (Desulfurivibrio

alkaliphilus) were found.

No substrate Acetate HZICO2 Methanol TMA
Mine 1 Mine 2 Mine 1 Mine 2 Mine 1 Mine 2 Mine 1 Mine 2 Mine 1 Mine 2
M C T1 T2 C T1 T2 c T T2 cC T1 T2 cC T1 T2 cC T T2 cC T1 T2 cC T1 T2 cC T T2 C T1 T2| M

I

.-
25b
=+ 26b

Ve

. : 3

u 3a - 17 =22

2a 2b

FIG. 2: Denaturing gradient gel electrophoresis (DGGE) of the bacterial community in unamended and
amended cultures of weathered coal and mine timber from two different coal mines. The numbered
bands were excised and sequenced. Small letters indicate bands of the same migration behaviour and
sequence. The sequence similarity to the closest cultivated phylotype is given in Table 1. Bands with
equivalent positions in different lanes (indicated by small letters) always corresponded to the same
sequences.

33



2 PUBLICATIONS

TABLE 1. Bacterial diversity detected by denaturing gradient gel electrophoresis (DGGE) from
original and amended/unamended incubation samples of weathered coal and mine timber.

Coal mine 1
Closest cultured relative Similarity (%) Band no. in Fig. 2 Accession no.
Original sample Anaeromyxobacter sp.* 96
Actinobacterium sp.* 929
Acholeplasma sp. 95
Dechloromonas hortensis 94
Azoarcus sp. 98
Gracilibacter thermotolerans 89
Desulfuromonas michiganensis 94
Desulfuromonas acetexigens 89
Chloroflexi sp. 87
Cultures
Unamended Janthinobacterium lividum* 96 1
Pelobacter acetylenicus* 95 2a
Desulfurivibrio alkaliphilus 95 3a
Acetate Chlorobi sp.* 84 7
Azoarcus sp.* 99 8
Desulfocapsa thiozymogenes 72 9
Halochromatium sp. 91 10
Desulfobulbus sp. 91 11
Thiorodospira sibirica 94 12
Desulfosalina propionicus 93 13
H,/CO, Acholeplasma brassicae 90 18a
Methylamine Halochromatium sp.* 94 21
Halochromatium salexigens* 93 22
Nitratireductor aquibiodomus 98 23
Acholeplasma sp. 94 24

*Coal original samples and incubations
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Methanosarcinales and Crenarchaeota represent the Archaea

Methanogenic archaea were enriched in all amended (acetate, hydrogen and methylamine) and
unamended cultures and were also present in the original samples of coal and timber in both
coal mines. Most of them were related to acetoclastic Methanosarcinales (Methanosarcina sp.,
Methanosaeta sp., Table 2). Methylotrophic Methanosarcinales related to Methanolobus sp.

were selectively enriched from mine timber and coal in cultures containing methylamine.

Sequences originating from uncultured Crenarchaeota were observed in coal and timber
cultures and in original samples of both mines (Table 2). The crenarchaeal sequences belonged
to unclassified Thermoprotei and to members of the marine archaecal group 1. The only
crenarchaeal sequence giving hints on a possible metabolism was observed in methylamine
cultures, and was related to the ammonia-oxidising Nitrosopumilus maritimus. Two
euryarchaeal sequences derived from members of Halobacteriales and Thermoplasmatales
were detected in coal. Furthermore, the use of archaea-specific primers yielded one 18S fungal

rRNA sequence (see below).

TABLE 2. Phylogenetic affiliation of DGGE bands after amplification of the archaeal 16S rRNA gene
in the untreated samples and in the unamended/amended incubations of weathered coal and mine timber
samples from two different coal mines.

Coal mine 1 Coal mine 1 Coal mine 2
2006 2007 2007
Substrate Closest relative Similarity (%) Acc. no. Closest relative Similarity (%)  Acc. no. Closest relative Similarity (%)  Acc. no.
Original Uncultured Crenarchaeote* 83 Uncultured Euryarchaeote* 97 Natronomonas pharaonis* 94
Uncultured Thermoplasmatales* 83 Uncultured Thermoplasmatales* 82 Uncultured Methanosarcineaceae 87
Uncultured Crenarchaeote 99 Uncultured Methanosarcinaceae 95 Uncultured Crenarchaeote 87
Uncultured Methanosarcinaceae 95 Uncultured Crenarchaeote 99 Serpula himantioides 96
Methanomethylovorans hollandica 96 Uncultured marine Crenarchaeote 96
Unamended Methanosarcina barkeri* 96 Uncultured Euryarchaeote* 97 Uncultured Crenarchaeote* 99
Methanosarcina barkeri 93 Uncultured Crenarchaeote* 98 Uncultured Methanosarcinales 98
Methanosarcina siciliae 99 Methanosarcina barkeri 98
Uncultured Crenarchaeote 96 Methanolobus taylorii 97
Acetate Methanosarcina lacustris* 97 Methanolobus taylorii* 97 Uncultured Crenarchaeote* 99
Methanosarcina barkeri 98 Methanosarcina barkeri 98 Uncultured Methanosarcinaceae 99
Methanosaeta harundinaceae 98 Methanosaeta harundinaceae 98
H,/CO, Methanosarcina barkeri* 98 Uncultured Crenarchaeote* 99 Uncultured Crenarchaeote* 99
Methanosarcina barkeri 98 Methanosarcina barkeri 98 Uncultured Methanosarcinaceae 99
Methanolobus taylorii 97 Methanolobus taylorii 96
Methanosaeta harundinaceae 93
Methanomethylovorans hollandica 93
Uncultured Crenarchaeote 97
Methylamine Methanolobus taylorii 97 Methanolobus taylorii* 97 Uncultured Methanosarcinaceae* 98
Methanolobus oregonensis 97 Methanosarcina barkeri 99 Methanolobus taylorii 94
Methanolobus tindarius 95 Methanolobus taylorii 97 Nitrosopumilus maritimus 89
Uncultured Crenarchaeote 96

*Coal original samples and incubations
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Biofilms harbour specific bacterial communities

The host-rock walls and the timber truss of the mines were largely covered by biofilms (Figure
le), which were analysed separately. The microbial community composition differed from
those of coal and timber. A total of 14 sequences were affiliated to members of Nitrospirae,
Firmicutes, Bacteroidetes/Chlorobi group and the Proteobacteria (Table 3). The archaeal
domain was represented by methanogenic archaea (Figure 1f-g) belonging to the obligate
hydrogenotrophic Methanococcales and methylotrophic Methanosarcinales (Table 3).
Furthermore, sequences originating from uncultured Crenarchaeota simlar to those detected in
coal and timber were found. However, a few sequences were affiliated with the ammonia-

oxidizing Candidatus Nitrososphaera gargensis (97% similarity).

The host rock harboured a completely different microbial community represented by sequences
derived from the Bacteroidetes/Chlorobi group (uncultured Psychroflexus, 87% sequence
similarity), the Firmicutes (Butyrivibrio fibrisolvens, 90%) and the Gammaproteobacteria
(Legionella feelei, 93%). With archaeal primers, only sequences related to uncultured

Crenarchaeota were found.

TABLE 3. Procaryotic diversity detected in the biofilm covering large parts of the host-rock walls and
timber truss in mine 1.

Biofilm on host-rock wall

Closest cultured relative Similarity (%) Accession no.
Bacteria Balneola sp. 91
Legionella feeleii 87
Uncultured Psychroflexus 87
Nitrospira moscoviensis 84
Rubrivivax sp. 91
Hydrogenophaga sp. 87
Archaea Methanomethylovorans hollandica 99
Methanotorris formicicum 81
Candidatus Nitrososphaera gargensis 97
Uncultured Crenarchaeote 100

Biofilm on timber truss

Bacteria Fusibacter paucivorans 97
Legionella feeleii 91
Balneola sp. 87
Nitrospira moscoviensis 84

Archaea Methanomethylovorans hollandica 99
Uncultured Crenarchaeote 100

*Coal original samples and incubations
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Typical wood-degrading fungi colonise mine timber

A total of 13 species belonging to the Ascomycetes and Basidiomycetes were detected from
timber samples by DGGE fingerprinting and sequencing. Of these, 10 were isolated (Table 4,
Figure 1c-d). Members of the Ascomycetes predominated the fungal communities in both
mines, although the community composition was different. A higher diversity of Fungi was
detected in coal mine 1, where large fungal mats covered the timber (Figure la-b). Mine 2
harboured less species. The majority of the detected sequences could be affiliated with relatives
of wood-degrading Fungi. As mentioned above, the use of archaea-specific primers yielded
18S fungal rRNA related to Serpula himantioides (96% similarity), a timber-degrading fungus
belonging to the Basidiomycetes.

TABLE 4. Fungi detected by DGGE in original samples of mine timber from two different coal mines.

Coal mine 1 Coal mine 2
Closest relative Similarity (%) Closest relative Similarity (%)
Ascomycetes
Aspergillus sydowii 77 Pseudallescheria boydii 84
Hypocrea lixii 94 Nectria mauritiicola 88
Penicillium islandicum 86
Penicillium cyclopium 86
Acremonium sp. 94
Verticillium antillanum 94
Basidiomycetes
Oligoporus balsameus 97 Bjerkandera adusta 98
Hyphodontia hastata 97
Trechispora alnicola 98

Bridgeoporus nobilissimus 96

Quantitative PCR confirms the abundance of dominant groups

In order to assess the abundance of selected groups, quantitative PCR was performed on the
original samples. Broad-range 16S rRNA primer sets were used to evaluate the bacterial vs.
archaeal abundances. Bacteria ranging between 10° and 10® cells g were the most abundant

prokaryotes in coal as well as in timber (Figure 3). The numbers were higher in timber than in
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coal. For the quantitative detection of sulfate reducers, the dissimilatory sulfite reductase gene
(dsrA) was targeted. Consistently low abundances of sulfate reducers (0.01-1% of total

bacteria) were found with moderately higher abundances in timber than in coal.

Archaeal numbers (10° to 10* cells g coal and 10* to 10° cells g timber) were 3-4 orders
of magnitude lower than those of the bacteria (Figure 3). Specific 16S rRNA primer sets were
applied for the differentiation of the Methanosarcinales and the Crenarchaeota. These two
groups accounted for almost 90 % of the Archaea (Methanosarcinales 35%, and
Crenarchaeota 55%). Furthermore, the quantification of the methylcoenzyme M reductase
gene (McrA) as a proxy for methanogenic archaea showed that Methanosarcinales accounted

for most of the the methanogens.

The abundance of fungal copy numbers was determined by fungi-specific 18S rRNA
primers. Fungal targets reached numbers of 10° and 10° copies per g coal and timber,

respectively.

109 -
108 —
107
106 —

105 -

Cells [g coal/timber]

104 —

103 -

Mine 1* Mine 1 Mine 2 Mine 1* Mine 1* Mine 1 Mine 1 Mine 2 Mine 2

Coal Timber

Hl Bacteria [ Archaea == Crenarchaea

DsrA targets McrA targets Methanosarcinales

FIG. 3. Profile of the microbial abundances in coal and mine timber of two different coal mines from
the sampling campaigns in 2006* and 2007. The results of the timber samples were gained from two
different sampling sites inside the same coal mine. Relative abundances of Archaea, Bacteria and fungi
and functional genes (dsrA and mcrA-genes) were determined via quantitative PCR. Additionally, the
abundances of Methanosarcinales and Crenarchaea as important subgroups within the domain Archaea
were determined. The calculated standard deviations for replicate quantifications of one sample were
constantly between 10 and 50%.
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DISCUSSION

In this study we have identified not only the methane-producing archaea in two abandoned coal
mines, but also the populations feeding them and the possible substrates utilised for this
process (Figure 4). For the first time, a quantitative assessment of the prokaryotic communities
in coal and timber was performed. The following scenario regards the environmental situation
and the fact that acetate is the precursor of methane. We assumed that the identified
populations have similar metabolic capacities as their cultured relatives. This assumption is

hypothetical and not yet confirmed by activity measurements.

Oxic conditions promote weathering of coal and timber

After the end of mining in the 1960’s, the mines of this study were closed with several metre
thick concrete walls. Since there was only marginal ventilation via small empty pipes or cracks,
the atmospheric conditions in these parts were characterised by high humidity and a low
oxygen content with less than 4% oxygen. However, oxygen was still available. Weathering of
coal normally starts by a microbial attack under oxic conditions (Fakoussa 1990). However, the
observation of thick fungal mats on timber lets us assume that timber provides the main
precursors of methane. Wood-degrading Fungi are aerobes that usually carry out complete
oxidation of their substrates. Underneath the mats, oxygen depletion might occur and create
anoxic conditions, particularly at lowered atmospheric O, concentrations. Under these
conditions, Fungi might perform incomplete oxidation and release reduced substrates which

can be channeled into methanogenesis.

A way to overcome potential nitrogen limitations

Timber and coal have low nitrogen content, and communities feeding on them might possibly
run into nitrogen limitation. This was found for fungal timber degradation especially in the
later decomposition stages (Spano et al. 1982). In case of nitrogen limitation, two potential
diazotrophs (Clostridium sp. and Azoarcus sp.) found in our samples might potentially help to
overcome these deficiencies (Jurgensen 1973; Larsen et al. 1978; Jurgensen et al. 1984). A
beneficial effect of N»-fixing wood-inhabiting bacteria on fungal growth was found in coal

seams before (Hurek and Reinholdhurek 1995; Shin et al. 2008). Interestingly, relatives of
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these bacteria were described as tunneling bacteria paving the way for fungal hyphae through

decaying wood (Rogers and Baecker 1991; Clausen 1995).

Facultative anaerobic bacteria and acetogens are assumed to fuel methanogenesis

The major bacterial groups were also observed in deep coal layers in recent investigations by
Fry et al. (2009). The relaivtives of most of them are capable of both, oxygen respiration and
fermentation. Only few sequences are derived from strict anaerobes (Figure 4). Some relatives
of the detected bacteria are related to acetogens using hydrogen as electron donor (Kiisel et al.
2000). Acetogenic Clostridia were found in earlier surveys in coal-mine sediments (Shimizu
et al. 2007; Shin et al. 2008). The presence of the acetogens might explain the low abundance
of hydrogenotrophic methanogens, and thus favouring acetoclastic methanogenesis as the

dominant process.

Methane is released by acetoclastic Methanosarcinales

Our recent detection of acetate-consuming methanogens in abandoned coal mines (Kriiger et al.
2008) was confirmed on a quantitative basis. All methanogens found in original samples and
unamended enrichments belonged to the Methanosarcinales. Their nearest cultured relatives
can utilise acetate, some of them additionally hydrogen. Our observations are in accordance
with the detection of high methane formation rates in enrichment cultures with acetate, and also
with the accumulation of acetate in incubations after inhibition of methanogens by 2-
bromoethanesulfonate (Kriiger et al. 2008). Obviously, acetate is the main precursor of
methane in the investigated coal mines. Acetoclastic methanogenesis was also dominant in two
other coal seams investigated recently (Green et al. 2008; Ulrich and Bower 2008).
Methanogen sequences derived from Methanosarcinales were also observed in deep coal
deposits (Fry et al. 2009). However, in mine water and drainages sampled aboveground,
hydrogenotrophic methanogens were prevailing (Flores 2008; Warwick et al. 2008; Strapoc et
al. 2008a). Furthermore, methylotrophic methanogenesis appears to play a role in coal seam
groundwaters investigated by Shimizu et al. (2007). We selectively enriched methylotrophic
methanogens (with methanol or trimethylamine), but did not find a quantitative impact on the

in situ processes.
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The methanogens constituted about half the Archaea, the other half belonged to uncultured
Crenarchaeota. A few sequences were affiliated with ammonia-oxidising Nitrosopumilus
maritimus and Nitrososphaera gargensis. N. maritimus has already been detected in coal
waters (Shimizu et al. 2007). However, no Crenarchaeota were found in one timber sample of
mine 2 and until now nothing is known about the physiological features of the majority of the

Crenarchaeota present in our samples.

In conclusion, in the sealed compartments of the coal mines a complex community of microbes
is involved in methane formation, inhabiting very distinct ecological niches. The presence of
biogenic methane not only in mined and pristine coal seams but also in oil reservoirs (Head et
al. 2004) or black shales (Martini et al. 2008) underlines the large potential of this
unconventional biological energy resources for future exploitation. Our findings provide the
basis for a deeper understanding of the underlying processes and timescales, and thus should

help to get more reliable estimates of global methane inventories.
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FIG. 4. Overview of the main organism groups and their feasible involvement in the degradation of
hard coal and mine timber in two investigated coal mines.
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MICROBIAL ACTIVITY IN COAL MINES

ABSTRACT

In abandoned coal mines, methanogenic archaea are responsible for the production of
substantial amounts of methane. The present study aimed to directly unravel the active
methanogens mediating the methane release as well as active bacteria potentially involved in
the trophic network. Therefore, the stable-isotope labeled precursors of methane, *C-acetate
and Hy+">CO, were fed to liquid cultures from hard coal and mine timber from a coal mine in
Germany. Directed by the methane production, samples for DNA stable-isotope probing (SIP)
coupled to subsequent quantitative PCR and DGGE analyses were taken over 6 months.
Surprisingly, the formation of *C-methane was linked to acetoclastic methanogenesis in both,
the *C-acetate and H,+"°CO,-amended cultures of coal and timber. Hy+'>CO, was mainly
used by acetogens related to Pelobacter acetylenicus and Clostridium species. Active
methanogens, closely affiliated to Methanosarcina barkeri, utilized the readily available
acetate rather than the thermodynamical more favourable hydrogen. Thus, we functionally
dissect a methanogenic microbial community highly adapted to the low H, conditions usually

to be found in coal mines.

INTRODUCTION

Worldwide, mine gas emissions of active and abandoned coal mines release substantial
amounts of methane contributing up to seven percent of the global methane formation (4).
Mine gas is a hazard but also is a potential source of methane for the industry. Stable carbon
and hydrogen isotopic signatures indicated that methane in mine-gas has a mixed thermogenic
and biogenic origin (33, 31). In abandoned coal mines, the thermogenic methane is a
remainder of geological processes, but its biogenic formation is still going on (14). Besides
hard coal, possible sources for methane are large amounts of mine timber that was used for
the construction of mines and left behind after the end of mining.

Generally, methane is produced either from acetate, hydrogen or methylotrophic substrates
as precursors. Recently, we showed that methylotrophic methanogenesis did not have a
quantitative impact on the in situ processes (2). However, while hydrogen is energetically
favourable, acetate is the quantitatively more available substrate (38). In former studies we
have revealed that acetate is an important intermediate of the degradation processes and the
main precursor of the biogenic methane in abandoned coal mines (14). We have also shown
the presence of Methanosarcina spp. as the dominating archaea (2). Methanosarcina spp. are

49



2 PUBLICATIONS

able to use acetate as well as H,+CO,. While other investigations reported that
methanogenesis in coal mines is mainly driven by Hs-utilizing archaea (7, 28), our studies
indicated that acetoclastic methanogenesis seems to be the main methanogenic process at least
in the abandoned coal mines we have investigated (2).

The activity of methanogens in different habitats can be studied by using stable isotope
probing (SIP, 17, 16). DNA-SIP allows the identification of specifically active members of
microbial populations based on the incorporation of "*C into the DNA of cells consuming
labeled substrates (18). In this technique, labeled DNA is resolved after incubation under label
addition by subsequent isopycnic gradient ultracentrifugation (22). Hence, guilds of
methanogens that utilize '*C-labeled methanogenic substrates such as '“C-acetate or
H2+13C02 can be recovered in *C-enriched DNA. However, both methanogenic precursors
can also be utilized by syntrophic acetate oxidatizing and/or homoacetogenic bacteria,
respectively (27, 32). Until now, only few SIP studies were performed in coal habitats. Han et
al. (10) investigated the active methanotrophic community in a Chinese coal deposit.
However, no studies are present revealing the activity of microorganisms directly involved in
methane production in abandoned coal mines. In our present study, we wanted to identifily
active methanogens and test the hypothesis that acetate is a main precursor of methane even if

hydrogen is available as an energetically more favourable electron donor.

MATERIALS AND METHODS
Sample collection and enrichment cultures

Samples were collected in May 2007 in sealed compartments of coal mines closed in the
1960’s. Briefly, large pieces of coal and mine timber were collected aseptically in glass
bottles that were immediately flushed with N, and stored at 4°C until further processing.
In situ temperatures were 35-36 °C with 100 % air humidity. Processing of coal and mine
timber samples was done in an anaerobic chamber under nitrogen atmosphere to prevent
oxidation. Samples were homogenized and distributed in hungate tubes containing 500 mL of
sulfate-free mineral medium (36) with a salinity of 15 PSU, according to in situ values.
Controls were supplemented with 10 mM 2-bromoethanesulfonate (BES) to exclude abiotic
degassing by inhibiting methanogenesis. Enrichment cultures were amended with either

10 mM fully C-labeled acetate (Campro Scientific) or *C-bicarbonate (Campro Scientific)
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+ H,. All incubations were frozen at -80°C after an incubation time of 6 month until further
processing for DNA-SIP. Subsamples of all incubations were taken at month 0 and 3 of
incubation. The increase of methane and hydrogen in the headspace as well as the stable
isotopes of methane were continuously monitored over 6 months and analyzed by gas
chromatography/mass spectrometry (GC/MS) as described previously by Kriiger et al. (13).
Concentrations of acetate were analyzed by high-performance liquid chromatography (Agilent
Technologies) using a Zorbax Eclipse Plus C8 USP L7 column (Agilent technologies) at
60°C. The eluent was a 5 mM H,SO4/methanol gradient at 1 ml/min. Acetate was detected by

a diode array detector (DAD, Agilent Technologies).

DNA extraction, isopycnic centrifugation and gradient fractionation

DNA was extracted from 0.5 g of incubation slurry after 0, 3 and 6 months using phenol-
chloroform extraction as described by Lueders et al. (18). Three parallel extractions were
carried out and pooled for each incubation treatment. DNA was checked by standard agarose

gel electrophoresis and quantified using PicoGreen staining according to Wilms et al. (37).

Gradient preparation, isopycnic centrifugation and gradient fractionation were performed
as described by Lueders et al. (17) with minor modifications. Each gradient consisted of
6.3 mL of CsCl (approximately 1.72 g mL™, Calbiochem), and ca.l mL of gradient buffer
(100 mM Tris-HCL, pH 8.0, L™, 100 mM KCL L', 1 mM EDTA L) including 2000 ng of
DNA. Prior to centrifugation, the average density of the centrifugation medium was
controlled refractometrically and adjusted to an average density of 1.84 g cm™. The samples
were centrifuged in 6.3 mL polyallomer quick-seal tubes (Beckman) in a NVT 65 near
vertical rotor (Beckman) using a Beckman LE-70 Ultracentrifuge (Beckman Instruments).
Centrifugation was performed at 20°C for 36 h at 44500 rpm (184000g). Gradients were
fractionated as described before by Neufeld et al. (21). Briefly, the gradients were
fractionated from bottom to top into 12 equal fractions (400 pL). A precisely controlled flow
rate was achieved by displacing the gradient medium with water at the top of the tube using a
Graseby syringe pump 3100 at a flow rate of 1 mL min"'. The density of each collected
fraction (a small aliquot of 100 pL) was measured by determining the refractory index using a
digital refractometer (AR20; Reichert Analytical Instruments, Depew, NY, USA).
Subsequently, the DNA was precipitated using polyethylene glycol 6000 (Aldrich Chemistry).

The DNA pellet was washed once with 70% ethanol and dissolved in 25 pL of elution buffer.
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Quantification of archaeal and bacterial 16S rRNA genes in density gradient fractions

DNA was precipitated from gradient fractions and quantified fluorometrically and by
quantitative PCR using the primer system Arl09f/Ar912rt and Ba27F/907R modified to
Lueders et al. (17). The qPCR mixtures contained 12.5 pL of the premix solution of a
DyNAmo HS SyberGreen qPCR Kit (New England Biolabs, Inc., Hitchin, UK), 1 puL of each
primer and 10 pL standard or DNA extract as a template in a final reaction volume of 25 uL.
The PCR was carried out in a Rotor-Gene-3000 cycler (Corbett Research, Sydney, Australia).
After initial denaturation at 95°C for 15 min, 50 cycles followed. Each cycle consisted of
denaturation for 30 s at 94°C, annealing for 20s at 52°C for bacteria and for archaea
elongation for 30 s at 70°C, and fluorescence measurement at 70 °C. To check amplification
specificity, fluorescence was also measured at the end of each cycle for 20 s at 80°C for. After
the last cycle, a melting curve was recorded by increasing the temperature from 50°C to 99°C
(1°C every 10 s). The numbers of bacterial and archaeal 16S rRNA gene targets were
calculated from the DNA concentrations according to Siiss et al. (30). DNA standards for
quantitative (real-time) PCR were prepared as described by Wilms et al. (37) and Engelen et
al. (6). Bacterial and archaeal targets were measured in at least three different dilutions of

DNA extracts (1:10 to 1:1000) and in triplicate.

PCR and denaturing gradient gel electrophoresis (DGGE) analysis

For denaturing gradient gel electrophoresis (DGGE), a 803-bp fragment of the archaeal
16S rRNA gene was amplified by using the primers Ar109f (5°-AC KGC TCA GTA ACA
CGT-3") and Ar912rt (5'-GTG CTC CCC CGC CAA TTC CTT TA-3"). For the analysis of
bacterial composition, the primers BA27F (5°-AGA GTT TGA TCM TGG CTC AG -3") and
907R (5’-CCG TCA ATT CCT TTG AGT TT-3") were used to amplify a 880-bp fragment of
the bacterial 16S rRNA genes. At the 5-end of each forward primer, an additional 40-
nucleotide GC-rich sequence (GC-clamp) was added to obtain a stable melting point of the
DNA fragments in the DGGE according to Muyzer et al. (20). PCR amplification was
performed using an Eppendorf Thermal Cycler system (Mastercycler, Eppendorf, Hamburg,
Germany) as follows: 2 pL (1-100 ng) of template DNA, 1 U of Taq DNA polymerase, the
manufacturers recommended buffer as supplied with the polymerase enzyme, 10 mM

dNTP's, 50 uM of each of the appropriate primers, and 10 mM of BSA were adjusted to a
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total volume of 50 uL with PCR water (Ampuware, Fresenius, Bad Homburg, Germany). The
PCR-program included an initial denaturation step for 5 min at 94 °C. For the PCR of
archaeal and bacterial DNA, a first cycle step was carried out for 30 s at 94 °C; 30 s at 52°C;
and 1 min at 72 °C. The total number of cycles was 30. Primer extension was carried out for
Smin at 72°C. Aliquots (5 pL) of the PCR products were analyzed by agarose gel
electrophoresis in 1.5% (wt/vol) agarose gels and ethidium bromide staining (0.8 ng mL™) for

20 min on a UV transilluminator as described previously (37).

DGGE was performed using an INGENYphorU-2 system (Ingeny, Goes, The
Netherlands). PCR products and loading buffer (40% [wt/vol] glycerol, 60% [wt/vol] 1x Tris-
acetate-EDTA [TAE], and bromphenol blue) were mixed in a ratio of 1:2. The PCR
amplicons were applied directly onto 6% (wt/vol) polyacrylamide gels with a linear gradient
of 30-80% denaturant for archaeal and 50-70% for bacterial PCR products (with 100% denaturant
corresponding to 7 M urea and 40% [vol/vol] formamide). Electrophoresis was accomplished in
1xTAE buffer (40 mM Tris-acetate [pH 7.4], 20 mM sodium acetate, 1 mM Na,EDTA), at a constant
100 V and a temperature of 60°C for 20 h. After electrophoresis, the gels were stained for 2 h in
1xSybrGold solution (Molecular Probes, Eugene, USA) in 1 x TAE and washed for 20 min with distilled
water. The gel was digitized using the digital imaging-system (BioDocAnalyze; Biometra, Goéttingen,

Germany) with UV transillumination (302 nm).

Reamplification and sequencing of DGGE bands

DGGE bands were excised for sequencing using a sterile scalpel and treated as described by
Del Panno et al. (3). Briefly, the bands were transferred into 50 pL of PCR water and
incubated for 48 h at 4 °C. For reamplification, 2 uL of the supernatant was taken as a
template using the same reaction mix as described above with a final volume of 50 pL. The
PCR protocol was adjusted for the reamplification was the same as above with minor
modifications. The total number of cycles was 25 and the final elongation was carried out at
72 °C for 10 min. PCR products were purified by using the QIAquick PCR purification Kit
(Quiagen GmbH) and eluted in 30 pL. of PCR water. DNA vyields were estimated
fluorometrically in a microtiterplate reader (FLUOstar Optima, BMG Labtechnologies,
Offenburg, Germany) using a 1:200 diluted PicoGreen reagent according to a modified
manufacturer's protocol (Molecular Probes, Eugene, USA) as described in detail by Wilms
etal. (37). Sequence analyses were accomplished by GATC Biotech AG (Konstanz,
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Germany). Sequences were compared to those in GenBank using the BLAST tool of the
National Center for Biotechnology Information server (1) and have been deposited in the

GenBank nucleotide sequence database under the Accession Nos. AA-AX.

RESULTS

For SIP, microcosms with coal and timber samples were amended with *C-acetate and
H2+13C02 and incubated under in situ conditions. The accumulation of CHs was followed
over a period of 6 months. To identify active community members, samples for DNA
extraction were taken at the beginning, and after 3 and 6 months (Fig. 1A). The day 0

incubation samples served as SIP-controls.

Acetate is the precursor of methane

CH,4 production was observed in all incubations (Fig. 1A) with higher activities in timber than
in coal enrichments. Highest CH, formation rates (0.13 pmol per g wet weight and day) were
detected in the '*C-acetate enrichments between month 3 and 6 of incubation. The addition of
H,+">CO; resulted in less stimulation of methanogenesis (maximum rate 0.05 pmol per g wet
weight and day). The isotopic signature of CH,4 indicated that methane was formed from the
labeled substrates added (data not shown). No methane formation was observed in control
incubations with the methanogenesis inhibitor BES (2-bromoethanesulfonate). Therefore,

abiotic degassing of adsorbed methane from the incubated samples can be excluded.

While H, was largely used up after 3 months, acetate was completely depleted after
6 months (Fig. 1B and C). Interestingly, acetate formation was observed in the Hy+"’CO,
cultures, while there was no H, formation in the acetate incubation. The fact that acetate
formation was also detected in the unamended incubations indicated the central role of acetate
in the process of methanogenesis. The isotopic signature of the formed acetate showed a

strong labelling indicating its formation from >CO, (data not shown).
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FIG. 1: Long-term incubations of weathered hard coal and mine timber amended with '*C-labeled
acetate and H,+CO, and the microbial methane formation (A) as well as the acetate- (B) and hydrogen
(C) depletion/formation.
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DNA-SIP reveals that methanogenesis is mediated by Methanosarcina spp.

In order to identify active community members, samples from the '*C-enriched incubations
were analyzed by stable isotope probing (SIP). Density-resolved archacal DNA was first
detected in gradient fractions using archaeal qPCR (Fig. 2 and 3). The amount of archaeal
DNA detected in the heavy fractions increased over the incubation time between month 3 and
6. Only the timber cultures showed *C-labeled archaeal DNA already after 3 months, with
maximum quantities in DNA gradients from acetate enrichments. After 6 months, ‘light’ and
‘heavy’ DNA-fractions substantiated a clear labelling of archaeal DNA for timber and the

coal cultures, under both amended with *C-acetate and *CO,, respectively (Fig. 2 and 3).

Next, the archaeal community members detected in ‘light” and ‘heavy’ gradient fractions
were analyzed by denaturing gradient gel electrophoresis (DGGE) and subsequent band
sequencing (Tables 1 and 2). In general, total archaeal community composition was similar in
the *C-acetate and H,+'>CO, cultures, and dominated by relatives of Methanosarcina spp.,
Methanosaeta spp., and uncultured Crenarchaeota (Tables 1 & 2). However, clear C-
labeling was mainly evident for relatives of Methanosarcina spp. Increased respective band-
intensities reflected larger amounts of labeled ?C-DNA in the acetate cultures (Fig. 2 and 3).
To a minor extent, labeled DNA was also observed of a DGGE band related to Methanosaeta
spp. in the acetate enrichments. Members of the Crenarchaeota were abundant in the original

coal and timber samples but showed no incorporation of ’C-labeled substrates.

Identification of active Bacteria

Quantities of labeled bacterial 16S rRNA genes increased over incubation time (Fig. 2 and
3), as found for the Archaea. While strongly labelled bacterial DNA was detected especially
in the coal ’C-acetate amendments already after 3 months, H,+"’CO, cultures showed

substantial quantities of >*C-DNA only after 6 months of incubation.

In the acetate-amended coal samples, bacterial DNA labelled after 3 months was affiliated
to a lineage of uncultured Geobacteraceae and Pelobacter spp., and additionally to
Pseudoalteromonas and Clostridium spp. after 6 months. Most surprising, however, abundant
unlabeled and labelled DNA was detected for a relative of Pseudomonas sp. after 6 months

only. In Hy+"?CO,-amended coal samples, clearly labelled DNA was evident from gradient
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fraction DGGE analysis after 6 months only, and affiliated to Clostridium, Desulfovibrio and

Pelobacter spp., as well as again uncultered Geobacteraceae.

In "“C-acetate-amended timber cultures, members of chemoautotrophic bacteria
(Hydrogenophaga and Hyphomicrobium spp.) as well as sulfate and sulfur reducers
(Desulfovibrio and Desulfuromonas spp.) were primarily detected in ‘intermediate’ and
‘heavy’ gradient fractions. Surprisingly, the DGGE band dominating the highest density DNA
gradient fractions was related to Burkholderia spp. This could also be a methodical effect due
to the high GC-DNA content of Burkohlderia spp. In Hy+'>CO,-amended timber microcosms,
Hydrogenophaga spp. clearly dominated ‘heavy’ DNA after 6 months, while a relative of

Desulfovibrio spp. was detected in ‘intermediate’ gradient fractions already after 3 months.

TABLE 1. Bacterial and archael diversity in hard-coal incubations amended with "*C-acetate and
H,+CO, detected by denaturing gradient gel electrophoresis (DGGE) of density-resolved DNA
gradient fractions. Phylogenetic affiliation of the 16S rRNA genes from microbes that incorporated
C-labeled substrates are highlighted in grey.

Hard coal samples

Labeled substrate Closest cultured relative Similarity (%) Band letter in Fig. 2 Accession no.
Bacteria
Burkholderia cepacia 100 A
Pseudoalteromonas sp. 100 B
Clostridium sp. 99 C
Pseudomonas stutzeri 99 D
Desulfovibrio africanus 100 E
+ 3C-Acetate Pelobacter acetylenicus 95 F
Uncultured Geobacteraceae 99 G
Archaea
Methanosaeta sp. 98 a
Uncultured Crenarchaeota 98 b
Methanosarcina barkerii 99 c
Methanosarcina sp. 99 d
Bacteria
Burkholderia cepacea 100 A
Desulfovibrio alkaliphilus 92 B
Clostridium sp. 99 C
Desulfovibrio africanus 100 D
+ H2+13C02 Pelobacter acetylenicus 95 E
Uncultured Geobacteraceae 98 F
Xanthomonas sp. 100 G
Archaea
Methanosaeta sp. 98 a
Uncultured Crenarchaeota 99 b
Methanosarcina barkerii 93
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FIG. 2: Quantitative PCR distribution and DGGE-community profiles of density-resolved bacterial
and archaeal DNA in SIP centrifugation gradients after 3 and 6 months of "*C-acetate (Fig. 2A) and
H,+ CO, (Fig. 2B) incubations of hard coal. Letters on the DGGE profiles indicate the same band
throughout the gradient. Band letters correspond to those in Table 1. Same band letters indicate the
same organism
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TABLE 2. Bacterial and archael diversity in mine-timber incubations amended with '*C-acetate and
H,+"CO, detected by denaturing gradient gel electrophoresis (DGGE) of density-resolved DNA
gradient fractions. Phylogenetic affiliation of the 16S rRNA genes from microbes that incorporated
BC-labeled substrates are highlighted in grey.

Mine timber samples

Labeled substrate Closest cultured relative Similarity (%0) Band letter in Fig. 3 Accession no.
Bacteria
Acholeplasma sp. 95 A
Uncultured Bacteroidetes 99 B
Clostridium sp. 99 C
Burkholderia cepacia 100 D
Hyphomicrobium sp. 99 E
Hydrogenophaga sp. 94 F
Desulfovibrio sp. 95 G
+ 13C-Acetate Desulfovibrio africanus 100 H
Halochromatium sp. 92 I
Desulfuromonas acetexigens 95 J
Uncultured Geobacteraceae 96 K
Archaea
Uncultured Crenarchaeota 98 a
Uncultured Crenarchaeota 98 b
Methanosaeta sp. 98 C
Methanosarcina barkeri 99 d
Methanosarcina barkeri 93 e
Bacteria
Acholeplasma sp. 95 A
Uncultured Bacteroidetes 99 B
Clostridium sp. 99 C
Burkholderia cepacia 99 D
Hyphomicrobium sp. 99 E
Hydrogenophaga sp. 94 F
+ H,+13CO, Desulfovibrio sp. 95 ¢
Desulfovibrio africanus 95 H
Archaea
Uncultured Crenarchageota 98 a
Methanosarcina sp. 100 b
Methanosarcina sp. 100 C
Methanosarcina barkeri 99 d
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FIG. 3: Quantitative PCR distribution and DGGE-community profiles of density-resolved bacterial
and archaeal DNA in SIP centrifugation gradients after 3 and 6 months of '*C-acetate (Fig. 3A) and
H,+ *CO, (Fig. 3B) incubations of mine timber. Letters on the DGGE profiles indicate the same band
throughout the gradient. Band letters correspond to those in Table 2. Same band letters indicate the

same organisms
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DISCUSSION

In the present study we have identified active microbes responsible for methane formation in
samples taken from abandoned coal-mines. We demonstrated that acetate is the main
precursor of methane and identified the microbes involved in the processes leading to

methane formation.

Within the last few years, methane release was also observed and studied in other coal
mines, worldwide. Several of the community members we have detected in our samples have
been found previsouly in other coal mine deposits (especially Pelobacter acetylenicus,
Clostridium sp., Pseudomonas sp., Uncultured Geobacteraceae, Methanosarcinales sp.)
indicating their potential role in the process of methane release (25, 26, 8, 12). A
predominance of acetoclastic Methanosarcinales was already shown in two other coal seams
investigated recently (9, 34) and in comparable habitats, i.e. hydrocarbon-contaminated
aquifers (5). However, in coal mine water and drainages, hydrogenotrophic methanogens
were prevailing (7, 35, 29). Hydrogenotrophic methanogenesis dominated in the drainage
water of coal reservoirs. In the floating systems, easy degradable substrates might be released

that lead to intermediate hydrogen formation.

Methane release via acetoclastic methanogenesis

The fact that Methanosarcina spp. were responsible for methane production in our
enrichments would be in agreement with our earlier studies showing that the
Methanosarcinales are most abundant in the in situ coal and timber samples (2). Although,
Methanosarcina spp.are known to use both, hydrogen or acetate, those identified here seem to
be strictly adapted to the conditions in this habitat. In the mines studied, acetate seems to be
quantitatively more available for the Methanosarcinales. Hydrogen might be hardly formed at
low metabolic rates and therefore not be available for methanogens. Even after an incubation
time of six months with adequate supply of hydrogen, coal mine methanogens did to not make
direct use of the hydrogen for methane production. Hydrogen rather appeared to be used by

acetogens producing acetate which then, in turn, was utilized by the Methanosarcinales.
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Active Geobacteraceae predominate in coal

Acetotrophic members of the Geobacteraceae were found to be labeled in the coal
enrichments. Their abundance could be increased by amendment with acetate. However, they
were also active in the hydrogen incubations. This could be explained by secondary cross-
feeding processes since labeled acetate was formed. In our cultures, it is not clear which
electron acceptor is used by the Geobacteraceae for the acetate oxidation. One possibility
could be the utilization of electron acceptors directly from the coal like sulfur, since family
members of the Geobacteracea are described to be elemental-sulfur reducers (11). Jones et al.
(12) also obtained high numbers of Geobacter species from the coal, but none of the known
electron acceptors was present, suggesting that Geobacter might be capable of coupling the
degradation of organics to an electron- or Hy-accepting partner. This could also be proposed
in our case. However, different from our strict anoxic enrichments, coal mines showed low
concentration of oxygen in surface-near layers of coal. Corresponding to this, members of the
genus Geobacteraceae constituted for the bulk part of the overall bacterial community in the

original coal samples (Griindger, data unpublished).

Coal and timber: two substrates, two different active bacterial communities

The active bacterial communities differ in the coal and timber. The amendments with acetate
or H,+CO, did not have a strong effect on the active community composition. Besides the
active Geobacteraceae, the coal samples comprised active members of Pelobacter
acetylenicus, Clostridium and Pseudomonas species. In earlier studies, Pseudomonas stutzeri
was already isolated from coal samples and is potentially able to utilize polycylic aromatic
hydrocarbons (24). This suggestion can be supported by the fact that the first event of coal
fragmentation is carried out via exoenzymatic hydrolysis into small PAHs (29). Moreover,
Pseudomonas stutzeri is even more active when acetate is present as second electron donor
(19), and that could be one reason for its predominance in the coal-enrichments amended with

acetate. However, oxygen and nitrate were not available as electron acceptors.

In the Ho+ *CO, cultures, the accumulation of labeled acetate was detected. Relatives of
Pelobacter and Clostridium species might be involved in acetate formation, at least if
acetylene is present in case of Pelobacter acetylenicus (23). Which other coal compounds

could be feasible substrates for acetogenesis is still unknown.
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The timber enrichments were predominated by active bacteria similar to Hydrogenophaga
and Clostridium species, suggesting that they might use timber compounds or secondary
fermentative products for metabolism. Only the H2+13C02 coal-cultures showed a distinct
labelling of bacteria after 6 months. The slight heavy shift in the acetate coal-cultures might
not be an indication of bacterial activity, but a result of an increase of bacterial DNA with a
high GC-content like Burkholderia species (Fig. 3; Table 2). As in the coal cultures, the
H2+13C02 timber-enrichments also showed acetate formation. Obviously, timber provides
other acetogenic substrates than coal. However, Hydrogenophaga as well as Clostridium

species were recently also detected in coal samples from another mine (12).

Acetate is the main precursor of methane

In connecting the results from our earlier investigations (14, 2) with our new findings in the
present study, we have the following arguments supporting that acetoclastic methanogenesis
is the main route for methane formation: First, natural isotopic signatures of methane
indicated an acetoclastic origin, supported by the isotopic signatures of acetate that was
formed from *CO, (14). Second, highest methane formation rates were observed in the
acetate-amended enrichments of coal and timber, while H, gave lower activities. Third,
acetate was depleted in the acetate cultures but accumulated in the H,+ CO, and BES-treated
enrichments. Finally, DNA-SIP revealed that relatives of Methanosarcina spp. were
responsible for methane production under both BC-acetate and H, + 13COz—amendmen‘[, the

second coupled to the activity of bacteria related to acetogens.
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3 Discussion

In the present study, we have verified that a strong biogenic component of mine gas in
abandoned coal mines has a recent origin. Besides hard coal, the conversion of mine timber is
responsible for higher methane formation rates. The ongoing processes were unraveled and
we demonstrated that acetate is the main precursor of methane. We have identified the
complex prokaryotic community consisting of members of Fungi, Bacteria and Archaea.
Furthermore, we have identified the active Archaea and the Bacteria involved in the processes

leading to methane formation.

3.1 Ongoing biogenic methane formation

The natural stable-isotope analyses indicated that the biogenically produced methane is
formed via acetoclastic methanogenesis. This was confirmed by the fast stimulation of
methane formation in acetate-amended enrichment cultures. The respective acetoclastic
archaea were identified by the detailed microscopical and molecular analyses. The
predominance of these archaea and the ongoing methane formation in the unamended hard
coal and mine timber incubations furthermore indicated that acetoclastic methanogenesis is an

important process in Situ.

Since hard coal is effectively sterilized due to the high temperatures during its formation, the
best explanation for the presence of these diverse microbial communities is a recolonisation
introduced by the anthropogenic mining activities. Possibly, also the transport of microbes via
water in faults might provide a further source of microbial life, as postulated e.g. for gold

mines (Lollar et al. 2006).

3.2 Mine timber as the major source for biogenic methane

Besides hard coal, mine timber is a possible source for biogenic methane formation providing
the main precursors of methane. Wood-degrading fungi were detected, that mediate complete
oxidation of their substrates in an aerobic environment. However, underneath the thick fungal
mats, oxygen depletion might occur and create anoxic conditions, particularly at lowered
atmospheric oxygen concentrations. Under these conditions, fungi might perform incomplete

oxidation and release reduced substrates which can be channeled into methanogenesis.
67



3 DISCUSSION

3.3 Active acetoclastic Methanosarcinales release the methane

Acetoclastic Methanosarcinales are most abundant in the in situ coal and timber samples and
responsible for the methane production in the enrichments. Although Methanosarcinales are
known to use both, hydrogen as well as acetate, those identified here seem to be adapted to
the utilization of acetate. In the mines studied, the acetate seems to be quantitatively more
available for the Methanosarcinales. Hydrogen might be hardly formed at low metabolic rates
and therefore might not be available for methanogens. Even after an incubation time of six
months with an adequate supply of hydrogen, the methanogens did not take energetical
benefit by using the hydrogen for methane production. The hydrogen rather appeared to be

used by acetogens producing the acetate for the Methanosarcinales.

3.4 Coal and timber: two substrates, two different active bacterial

communities

The active bacterial communities differ in the coal and timber. The amendments with acetate

or H,+CO; did not have a strong effect on the active community composition.

3.4.1 Active Geobacteraceae predominate in coal

Acetotrophic members of the Geobacteraceae were found to be labeled in the coal
enrichments. Their abundance could be increased by amendment with acetate. However, they
were also active in the hydrogen incubations. This could be explained by secondary cross-
feeding processes since labeled acetate was formed. In our cultures, it is not clear which
electron acceptor is used by the Geobacteraceae for the acetate oxidation. One possibility
could be the utilization of electron acceptors directly from the coal like sulfur, since family
members of the Geobacteracea are described to be elemental-sulfur reducers (Holmes et al.
2004). Jones et al. (2010) also obtained high numbers of Geobacter species from the coal, but
none of the known electron acceptors was present, suggesting that Geobacter might be
capable of coupling the degradation of organics to an electron- or Hy-accepting partner. This
could also be proposed in our case. However, different from our strict anoxic enrichments,

coal mines showed low concentration of oxygen in surface-near layers of coal. Corresponding
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to this, members of the genus Geobacteraceae constituted for the bulk part of the overall

bacterial community in the original coal samples (Griindger, data unpublished).

Besides the active Geobacteraceae, the coal samples comprised active members of
Pelobacter acetylenicus, Clostridium and Pseudomonas species. In earlier studies,
Pseudomonas stutzeri was already isolated from coal samples and is potentially able to utilize
polycylic aromatic hydrocarbons (Schreiber et al. 1983). This suggestion can be supported by
the fact that the first event of coal fragmentation is carried out via exoenzymatic hydrolysis
into small PAHs (Strapoc et al. 2008b). Moreover, Pseudomonas stutzeri is even more active
when acetate is present as second electron donor (Mittal et al. 2008), and that could be one
reason for its predominance in the coal-enrichments amended with acetate. However, oxygen

and nitrate were not available as electron acceptors.

3.4.2 Active bacteria with potential acetogenic features

In the Ho+ "CO, coal-enrichments, the accumulation of labeled acetate was detected.
Relatives of Pelobacter and Clostridium species might be involved in acetate formation, at
least if acetylene is present in case of Pelobacter acetylenicus (Schink 1985). However,
relatives of Clostridium species are known to be acetogenic using hydrogen as electron donor
(Kiisel et al. 2000). Which other coal compounds could be feasible substrates for acetogenesis
is still unknown. The presence of the acetogens might explain the low abundance of
hydrogenotrophic methanogens, and thus favouring acetoclastic methanogenesis as the

dominant process.

The timber enrichments were predominated by active bacteria similar to Hydrogenophaga
and Clostridium species, suggesting that they might use timber compounds or secondary
fermentative products for metabolism. Only the H,+"CO, coal-cultures showed a distinct
labelling of bacteria after 6 months. The slight heavy shift in the acetate coal-cultures might
not be an indication of bacterial activity, but a result of an increase of bacterial DNA with a
high GC-content like Burkholderia species (Fig. 3, Table 2). As in the coal cultures, the
H,+*CO, timber-enrichments also showed acetate formation. Obviously, timber provides
other acetogenic substrates than coal. However, Hydrogenophaga as well as Clostridium

species were recently also detected in coal samples from another mine (Jones et al. 2010).

69



3 DISCUSSION

3.5 Different coal deposits, different methanogenic pathways

Within the last few years, methane release was also observed and studied in other coal mine
reservoirs, worldwide. Several of the community members we have detected in our samples
have been found previsouly in other coal mine deposits (especially Pelobacter acetylenicus,
Clostridium sp., Uncultured Geobacteraceae, Methanosarcinales sp.) indicating their
potential role in the process of methane release (Shimizu et al. 2007, Shin et al. 2008, Fry
etal. 2009, Jones et al. 2010). A predominance of acetoclastic Methanosarcinales was
already shown in two other coal seams and in deep coal deposits investigated recently (Green
et al. 2008; Ulrich and Bower 2008, Fry et al. 2009) and in comparable habitats, i.c.
hydrocarbon-contaminated aquifers (Dojka et al. 1998). However, in coal mine water and
drainages, hydrogenotrophic methanogens were prevailing (Flores 2008, Warwick et al. 2008,
Strapoc et al. 2008a). Hydrogenotrophic methanogenesis dominated in the drainage water of
coal reservoirs. In the floating systems, easy degradable substrates might be released that lead
to intermediate hydrogen formation. Furthermore, methylotrophic methanogenesis appears to
play a role in coal seam groundwaters investigated by Shimizu et al. (2007). We selectively
enriched methylotrophic methanogens (with methanol or trimethylamine), but did not find a
quantitative impact on the in situ processes. However, in the coal mines investigated here,

acetoclastic methanogenesis is responsible for the methane production.
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3.6 Acetate is the main precursor of methane

In conclusion, we have the following arguments supporting that acetoclastic methanogenesis

is the main route for methane formation:

1. Natural isotopic signatures of methane indicated an acetoclastic origin, supported by
the isotopic signatures of acetate that was formed from *CO,.

2. Highest methane formation rates were observed in the acetate-amended enrichments of
coal and timber, while H, gave lower activities.

3. Acetate was depleted in the acetate cultures but accumulated in the Hy+ CO, and BES-

treated enrichments.

4. DNA-SIP revealed that relatives of Methanosarcina spp. were responsible for methane
production under both B3C-acetate and H2+13 CO;-amendment, the second coupled to

the activity of bacteria related to acetogens.
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3.7 An overview: From coal and timber to methane

In the sealed compartments of the coal mines, a complex community of fungi, bacteria and
archaea is involved in methane formation, inhabiting very distinct ecological niches. Finally,

the following overview (Fig. 1) regards the environmental situation and the fact that acetate is
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Figure 1: Overview of the main organism groups and their involvement in the degradation of
hard coal and mine timber in two investigated coal mines. Active bacteria and archaea as well
as the main pathways to methane formation are highlighted in red
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