
Microbial ecology of marine sediments June, 07th – July, 2nd 2010

Course script

Dr. Bert Engelen, Dr. Martin Könneke, Judith Lucas, Monika Sahlberg, Jutta Graue, Anette Schulte AG Paleomicrobiology, ICBM, University of Oldenburg

Introduction

Primary production of organic matter in the oceans is mainly performed by phototrophic organisms. The formation of complex organic matter occurs in surfacenear waters where enough light for photosynthesis is available. Organic compounds that are composed in the euphotic zone serve as an energy- and carbon-source for heterotrophic microorganisms. During sedimentation, organic matter is already degraded to different degrees by those organisms and only a small proportion is deposited. While the most important electron acceptor in the water column is oxygen, the subsequent microbial mineralization within the sediments happens under oxic- and anoxic conditions.

Transport of oxygen into the seafloor is mainly caused by diffusion. In tidal-flat sediments, for instance, the availability of dissolved oxygen is limited to the very upper millimeters due to microbial respiration and the (abiotic) reaction with sulfide (Revsbech et al. 1980). Underneath, the degradation of organic matter, that is still available within these layers, is performed stepwise by anaerobic microorganisms using different terminal electron acceptors. The first step of hydrolizing the residual complex organic polymers to monomers is catalyzed by fermentative bacteria. The following oxidation of fermentation products is again mediated by bacteria via the reduction of nitrate, iron^{III}, manganese^{IV} and sulfate (Canfield 1993). As sulfate concentrations in the ocean are much higher than nitrate and as the hardly soluble iron^{III} is often not available, dissimilatory sulfate reduction becomes the most important process for mineralizing organic carbon within marine sediments (Jørgensen 1982).

Energetically, sulfate-reducing bacteria have an advantage over methanogenic archaea in competing for degradation products of fermentative bacteria and acetogens (e.g. formate and acetate). The exception are layers in which sulfate is completely respired by sulfate reducers. Here, methane is produced and typically higher amounts of methanogens are found. However, some methanogenic archaea are able to utilize methylated compounds (methanol, methylamine or methylsulfide) that are unfavourable substrates for sulfate reducers. This can lead to a coexistence of methylotrophic methanogens and sulfate-reducing bacteria in sulfate containing horizons of marine sediments (Oremland 1982).

Aim of the course

The physiological diversity of microorganisms and their spatial distribution within marine sediments will be demonstrated according to chemical and physical parameters. Different physiological groups will be analysed along the sediment column of an intertidal sandflat and a beach. Sediment sampling will be preformed at site "Janssand", a back barrier tidal-flat of the island "Spiekeroog" and the southern beach of the island in the beginning of the course.

Oxygen penetration, porewater sulfate and methane concentrations will be measured down to a depth of app. 5 meters (depending on sediment recovery). As microbiological parameters, total cell numbers will be counted after SYBR-green staining and the numbers of archaea and bacteria will be calculated after quantitative PCR. More specifically, the relative amount of sulfate reducers and methanogens will also be determined by quantitative PCR targeting key-genes for sulfate reduction and methanogenesis. Furthermore, every single group of students will specifically enrich one physiological type of microorganisms from distinctive sediment layers of site Janssand. Microbial growth and activity will be monitored over the whole period of the course.

Accompanying the course, all participants will give a 30-45 minute talk to introduce "their" physiological group concerning its ecology, physiology, and strategies for a specific enrichment. All the data and observations of the single groups will be combined at the end of the course to draw an overall picture of microbial diversity and the occurrence of the different physiological groups corresponding to relevant geochemical gradients.

Group O Aerobic bacteria in Wadden Sea sediment

Tasks:

- Oxygen profile and determination oxygen penetration depth
- Quantification of the total cell number
- Selective enrichment of heterotrophic aerobes
 - a) Comparison of two selected depths (0-2cm, 9-10cm)
 - b) Influence of different ratio between glucose and oxygen
- Estimation of aerobic heterotrophe numbers by dilution series and deep agar technique
- Selective enrichment of aerobic chemolithotrophes
- Quantification of total archaeal 16S copies by q-PCR

- A) Background
 - Oxygen availability in marine environments
 - Respiration and fermentation
- B) Halftime report (17.06.)
 - Introduction into the methods applied
 - Aims, expectations and preliminary results

Group N

Nitrate-reducing bacteria in Wadden Sea sediment

Tasks:

- Porewater profile of ammonia, nitrite and nitrate
- Quantification of the total cell number
- Selective enrichment of nitrate-reducing bateria
 - c) Comparison of two selected depths (0-2cm, 9-10cm)
 - d) Influence of different electron donors (formate, acetate, propionate and glucose) on nitrate consumption (IC) and nitrite (IC) and nitrogen gas production
- Estimation of nitrate reducer numbers by dilution series and deep agar technique
- Quantification of total bacterial 16S copies by q-PCR

- A) Background
 - The marine nitrogen cycle
 - Nitrate reducers: Physiology and Ecology
- B) Halftime report (17.06.)
 - Introduction into the methods applied
 - Aims, expectations and preliminary results

Group S Sulfate-reducing bacteria in Wadden Sea sediment

Tasks:

- Porewater profile of sulfate and chloride
- Quantification of the total cell number
- Abundance of SRB determined by q-PCR analysis of dsrAB genes
- Selective enrichment of SRB
 - e) Comparison of two selected depths (10 and 50 cm)
 - f) Influence of different electron donors (formate, acetate, propionate and glucose) on sulfate consumption (IC) and sulfide production (photometric)
 - Estimation of SRB numbers by dilution series and deep agar technique

- A) Background
 - The marine sulfur cycle
 - Sulfate-reducing bacteria: Physiology and Ecology
- B) Halftime report (18.06.)
 - Introduction into the methods applied
 - Aims, expectations and preliminary results

Group C Methanogens in Wadden Sea sediment

Tasks:

- Methane profile
- Quantification of the total cell number
- Selective enrichment of methonegens
 - g) Comparison of two selected depths (50 and 250 cm)
 - h) Comparison of two sampling sites
 - i) Influence of different electron donors (formate, acetate, propionate, glucose) on the production of methane
- Detection of enriched methanogenes via autofluorescence microscopy
- Determination of sediment porosity and density
- Abundance of methanogenes determined by q-PCR analysis of mcrA genes

- A) Background
 - The marine carbon cycle
 - Methanogens: Physiology and Ecology
- B) Halftime report (18.06)
 - Introduction into the methods applied
 - Aims, expectations and preliminary results

Schedule of the very first day: Mon, 7. June 2010

- 11:00, Rom W15-0-023:
- a) Introduction
- b) Briefing for both sampling trips and master plan for sampling

Group O

- Media preparation: 1 liter basic media (SCM, HEPES buffered)
- Preparation of stock solutions:
 - 1.) Glucose (1 M, 100 ml)
 - 2.) Thiosulfate (1M, 100 ml)
 - 3.) Ammonia (1 M, 100 ml)
- Preparation and washing (3x) of agar (3.3g in 100 ml final), portion to 3 ml per tube
- Autoclaving of media, stock solutions, glass ware (+ stoppers) and agar
- Cooling, finishing and filling of media in serum bottles (18x) and Pfennig bottles (3-4x)
- Packing for sampling (eg. Short push tubes and stoppers)

Group N

- Media preparation: 1 liter anoxic basic media for nitrate reducers (w/o sulfide)
- Preparation of stock solutions:
 - 1.) Sodium nitrate (1 M, 100 ml)
 - 2.) Sodium formate (1M, 100 ml)
 - 3.) Ascorbic acid (1 M, 100 ml)
- Preparation and washing (3x) of agar (3.3g in 100 ml final), portion to 3 ml per tube
- Autoclaving of media, stock solutions, glass ware (+ stoppers) and agar
- Cooling, finishing and filling of media in serum bottles (18x) and Pfennig bottles (3-4x)
- Packing for sampling (eg. Short push tubes and stoppers)

Groups S und C

- Media preparation: 2 liter anoxic basic media for SRB and methanogens
- Preparation of stock solutions:
 - 1.) Sulfate (2 M, 100 ml)
 - 2.) Sodiumacetate (1M, 100 ml)
 - 3.) Propionate (1M, 100 ml)
- Autoclaving of media, stock solutions, glass ware (+ stoppers)
- Group S: Cooling, finishing and filling of media in serum bottles (18x) and Pfennig bottles (3-4x)
- Group C: Preparation of NaOH solution for sediment fixation and portioning in tubes
- Group C: Cooling, finishing and filling of media in serum bottles (18x) and Pfennig bottles (3-4x)
- Group S: Preparation of fixing agents for total cell counts
- Packing for sampling

Schedule for the entire course

	Group 1 (O)	Group 2 (N)	Group 3 (S)	Group 4 (C)
Mon (07.06)	9:00 Written test	9:00 Written test	9:00 Written test	9:00 Written test
	Microbial Ecol	Microbial Ecol	Microbial Ecol	Microbial Ecol
	11:00 Intro	11:00 Intro	11:00 Intro	11:00 Intro
	Preparation of	Preparation of	Preparation of	Preparation of media
	media and	media and	media and	and sampling
	sampling	sampling	sampling	(see detailed
	(see detailed	(see detailed	(see detailed	schedule)
	schedule)	schedule)	schedule)	
Tue (08.06)	9:00 preparation	9:00 preparation	9:00 preparation	9:00 preparation of
100 (00000)	of sampling	of sampling	of sampling	sampling
	12:30	or sumpring	12:00	12:00
	Departure to		Departure to	
	Janssand		Janssand	
	(recovery of a		(recovery of a	
	5m core)		5m core)	
	17:00	17:00	17:00	
	Sampling for	Sampling for	Sampling for	17:00
	pore water, cell	pore water, cell	pore water, cell	Sampling for pore
	counts, DNA	counts, DNA	counts, DNA	water, cell counts,
	Inoculation of	Inoculation of	Inoculation of	DNA
	media	media	media	Inoculation of media
	(enrichments,	(enrichments,	(enrichments,	(enrichments,
	dilution series)	dilution series)	dilution series)	dilution series)
Wed (09.06)	9:00	9:00	9:00	9:00
× ,	O ₂ profile	Agar shakes	Agar shakes	Agar shakes
	Janssand	13:00	C	13:00
		Departure to		Departure to
		Spiekeroog		Spiekeroog
		(recovery of a		(recovery of a 5m
		5m core)		core)
		Pore water		Pore water
	18:00	18:00	18:00	18:00
	Sampling for	Sampling for	Sampling for	Sampling for pore
	pore water, cell	pore water, cell	pore water, cell	water, cell counts,
	counts, DNA	counts, DNA	counts, DNA	DNA
Thu (10.06)	12:00	12:00	12:00	12:00
	O ₂ profile	Pore water	Pore water	Pore water
	Spiekeroog	Ammonia	Sulfate IC	Methane GC
Fri (11.06)	9:00	9:00	9:00	9:00
	Enrichment	Enrichments	Enrichments	Enrichments
	cultures	(Nitrate, nitrite,	(Sulfate, sulfide)	(Methan)
	Microscopy,OD	ammonia, etc		Porosity/density

	Group 1	Group 2	Group 3	Group 4
	(O)	(N)	(S)	(C)
Mon (14.06)	9:00	9:00	9:00	9:00
	Enrichment	Enrichments	Enrichments	Enrichments
	Isolation	(Nitrate, nitrite,	(Sulfate, sulfide)	(Methan)
	Microscopy,OD	ammonia)	Sulfate, chlorid	Porosity/density
	Cell counts	N-Profiles		Methan-Profile
Tue (15.06)	9:00	9:00	9:00	9:00
	Enrichment	Enrichments	Enrichments	Enrichments
	Isolation	(Nitrate, nitrite,	(Sulfate, sulfide)	(Methan)
	Microscopy,OD	ammonia)	Sulfate, chlorid	Methan-Profile
	Cell counts	N-Profiles		
Wed (16.06)	9:00	9:00	9:00	9:00
	Enrichment	Enrichments	Enrichments	Enrichments
	Isolation			Cell counts
	17:00	17:00	17:00	17:00
	Jed Fuhrman	Jed Fuhrman	Jed Fuhrman	Jed Fuhrman
Thu (17.06)	9:00	9:00	9:00	9:00
	Seminar O+N	Seminar O+N	Seminar O+N	Seminar O+N
	Enrichment	Enrichment	Enrichment	Enrichment
	Isolation	Cell counts		
Fri (18.06)	9:00	9:00	9:00	9:00
	Seminar S+C	Seminar S+C	Seminar S+C	Seminar S+C
	Enrichment	Enrichment	Enrichment Cell	Enrichment
			counts	

	Group 1 (O)	Group 2 (N)	Group 3 (S)	Group 4 (C)
Mon (21.06)	9:00	9:00	9:00	9:00
	VL Microscopy	VL Microscopy	VL Microscopy	VL Microscopy
	10:30	10:30	10:30	10:30
	Enrichment	Enrichment	Enrichment	Enrichment
	Isolation	Isolation	Isolation	
Tue (22.06)	9:00	9:00	9:00	9:00
	VL Wadden Sea	VL Wadden Sea	VL Wadden Sea	VL Wadden Sea
	10:30	10:30	10:30	10:30
	Enrichment	Enrichment	Enrichment	Enrichment
	Isolation	Isolation	Isolation	HPLC
	DNA-extraction	DNA-extraction	HPLC	
Wed (23.06)	9:00	9:00	9:00	9:00
	VL Spectroscopy	VL Spectroscopy	VL Spectroscopy	VL Spectroscopy
	DNA-extraction HPLC	DNA-extraction HPLC	DNA-extraction	DNA-extraction
Thu (24.06)	9:00	9:00	9:00	9:00
	VL	VL	VL	VL
	Chromatography	Chromatography	Chromatography	Chromatography
			DNA-extraction	DNA-extraction
Fri (25.06)	9:00	9:00	9:00	9:00
	Enrichment q-pcr	Enrichment	Enrichment	Enrichment

	Group 1	Group 2	Group 3	Group 4
	(0)	(N)	(S)	(C)
Mon (28.06)	9:00	9:00	9:00	9:00
	Enrichment	Enrichment	Enrichment	Enrichment
	Isolation	Isolation		
		q-pcr		
Tue (29.06)	9:00	9:00	9:00	9:00
	Enrichment	Enrichment	Enrichment	Enrichment
			q-pcr	
Wed (30.06)	9:00	9:00	9:00	9:00
	Enrichment	Enrichment	Enrichment	Enrichment
				q-pcr
Thu (01.07)	Data aquisition	Data aquisition	Data aquisition	Data aquisition
	17:00	17:00	17:00	17:00
	Barbecue and	Barbecue and	Barbecue and	Barbecue and
	Volta	Volta	Volta	Volta
Fri (02.07)	Final reports	Final reports	Final reports	Final reports
	9:00	9:00	9:00	9:00
	Goup O	Goup O	Goup O	Goup O
	9:45	9:45	9:45	9:45
	Group N	Group N	Group N	Group N
	10:45	10:45	10:45	10:45
	Group S	Group S	Group S	Group S
	11:30	11:30	11:30	11:30
	Group C	Group C	Group C	Group C