
Physiology and diversity of prokaryotes

The Prokaryotic Cell

Bert Engelen

Physiology and diversity of prokaryotes

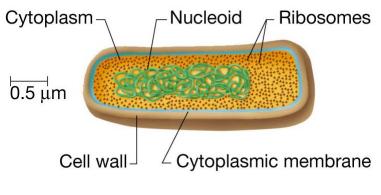
Physiology and Diversity of Prokaryotes

Bert Engelen, Martin Könneke

Mo, Tu, We, Thu, 12:15 - 13:45, R	oom W15-1-146
This lecture introduces into the metabolism and physiolo Participance is obligatory for master-of-microbiology stud environmental-science students. It is obligatory for partici Physiology of Bacteria'. A successful participation will be written tests.	ents and also open for biology- and pating in the practical course
Mo - 19.10. General introduction	B. Engelen
Tu - 20.10. Prokaryotic cell	B. Engelen
We - 21.10. Principles of metabolism	B. Engelen
Th - 22.10. Bioenergetics	M. Könneke
Mo - 26.10. Transport and regulation Tu - 27.10. Microbial growth We - 28.10. Recapitulation of the first block Th - 29.10. Phylogeny	M. Könneke M. Könneke B. Engelen, M. Könneke B. Engelen
Mo - 02.11. 1st written examination	B. Engelen, M. Könneke
Tu - 03.11. Fermenters	B. Engelen
We - 04.11. Aerobic respiring microbes	B. Engelen
Th - 05.11. Sulfate- and nitrate reducers	M. Könneke
Mo - 09.11. Methanogens und homoacetogens Tu - 10.11. Chemolithotrophs We - 11.11. Photosynthesis Th - 12.11. Recapitulation of the second block	M. Könneke M. Könneke
2nd written examination (date to be announced)	

Bert Engelen

Physiology and diversity of prokaryotes


What is Physiology?

Greek *physis*, nature, *logos*, word, *logia* science compare with Morphology, Taxonomy...

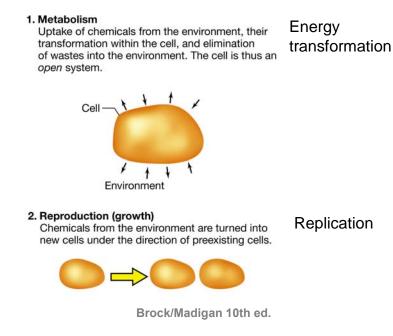
What is Diversity?

A property of communities or groups

The prokaryotic cell

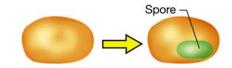
Brock/Madigan 10th ed.

Building blocks of organisms

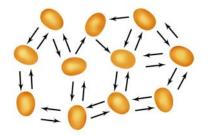

Example

- Subatomic
- Chemical element
- Molecule
- Molecule aggregate
- Organelle
- Cell
- Tissue
- Organ
- Organism
- (••• Population, community, biotope, biosphere)

- (Quarks, ...) proton, electron
- Hydrogen, carbon, oxygen
- Water: H₂O, sugar: C₆H₁₂O₆, peptide
- Multi-enzyme complex
- Nucleus, mitochondrium
- Bacterium, mouth mucosa cell
- Fat tissue
- Heart
- · Bacterium, amoeba, lion, tree


Living organisms consist of one or of many cells - most are unicellular

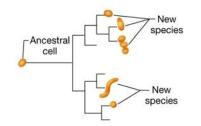
Definition and characteristics of life


3. Differentiation

Formation of a new cell structure such as a spore, Complexity usually as part of a cellular life cycle.

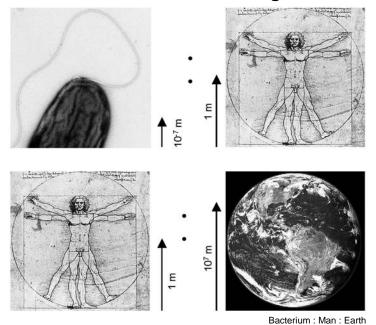
4. Communication

Cells communicate or interact primarily by means of chemicals that are released or taken up.


Regulation upon intraand extracellular signals

Brock/Madigan 10th ed.

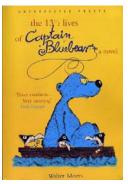
Response to environmental stress


- 5. Movement Living organisms are often capable of self-propulsion. *

6. Evolution Cells *evolve* to display new biological properties. Phylogenetic trees show the evolutionary relationships between cells.

Brock/Madigan 10th ed.

Size - the relevance of being small

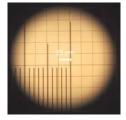


Consequences of size relations

bacteria : humans

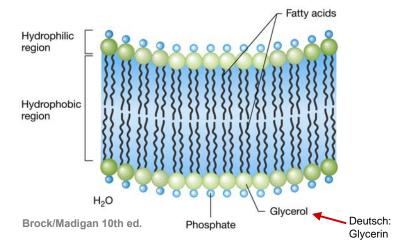
1-D: 10-7

- 2-D: 10⁻¹⁴ Biological activity is proportional to the membrane surface.
- 3-D: 10⁻²¹ For bacteria diffusion is a fast process.

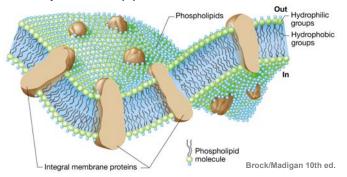

An example of size and number

Many natural water bodies contain about 10^6 bacteria per ml. How many of these will you see if you bring 10 µl water under a cover slip of 20 x 20 mm and count them through the 100-fold objective in a microscopic field of view with 100 x 100 µm?

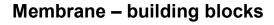
 $10 \ \mu l = 10^{-2} \ m l$ containing 10^4 bacteria under a cover slip with 400 mm².

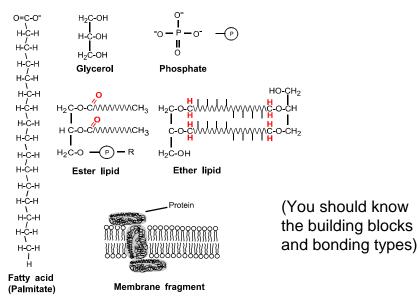

View field is only 0.01 mm²:

 $(0.01 / 400) \times 10^4 = 0.25$ per view field

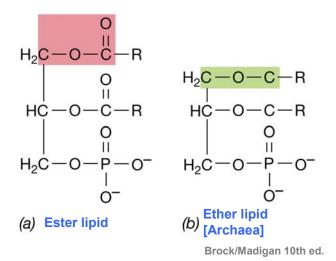

Membranes

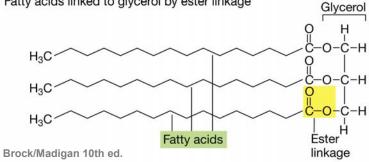
- Properties, permeability, "function"
- Building blocks
- Differences between Bacteria, Archaea, Eukarya

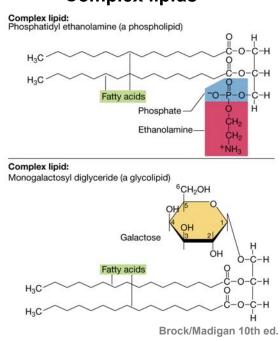



Membranes

- Thickness 2.5 + 3 + 2.5 = 8 nm
- Sidedness: defined by the proteins
- Semi-permeable (?)

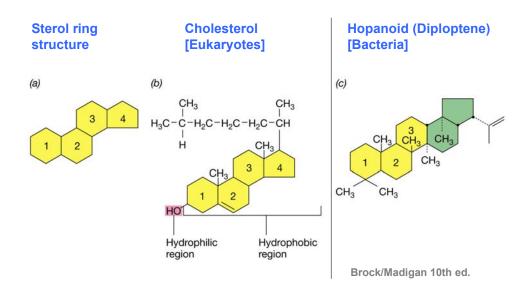

- Stands a membrane potential of 160 mV
- Permeable for uncharged small molecules
- Impermeable for the rest, if not mediated by transport proteins

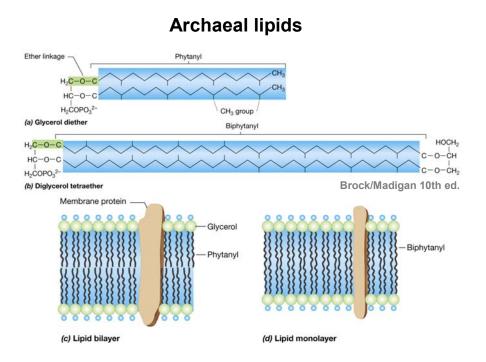




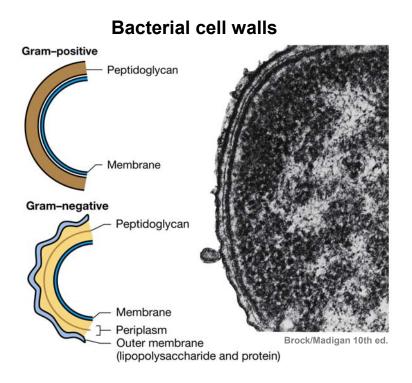
Cypionka, Grundl. der Mikrobiologie

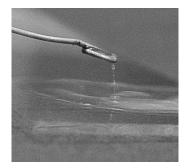
Ester vs ether bonding



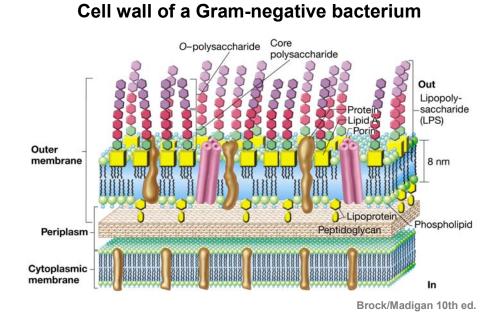


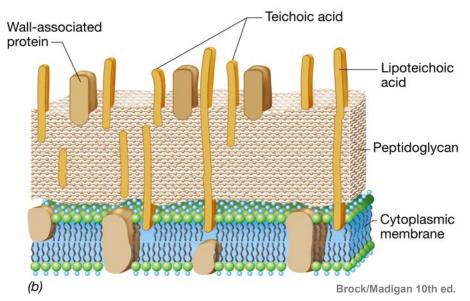
Complex lipids

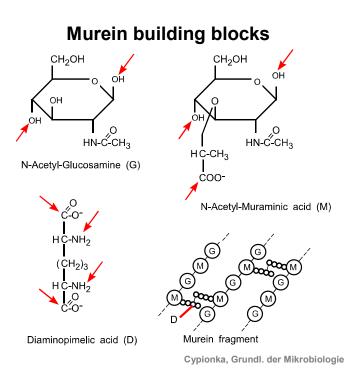

Complex lipids

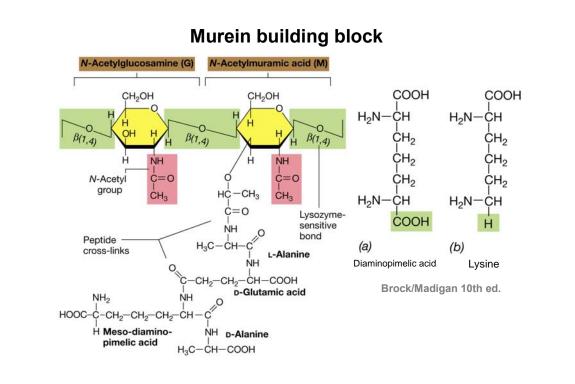


Cell wall

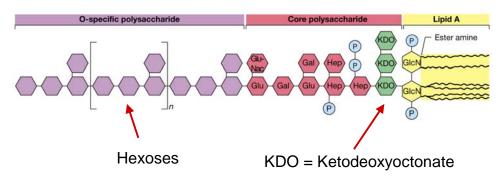

- Properties, permeability, "function"
- Building blocks
- Differences between Bacterial groups and Archaea
 - Jute bag around a balloon
 - Pressure resistant (0.3 bar osmotic pressure)
 - Shaping the cell
 - Not a barrier for diffusing molecules
 - Diaminopimelic acid as cross-linker
 - Occurence of D-amino acids

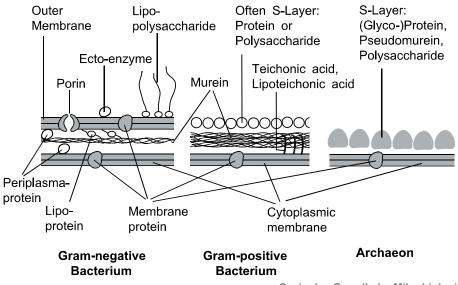

Gram-Test with KOH




3 % KOH causes lysis of Gram-negative cells and releases DNA

Cell wall of a Gram-positive bacterium




Lipopolysaccharides typical for the cell wall of Gram-negative bacteria

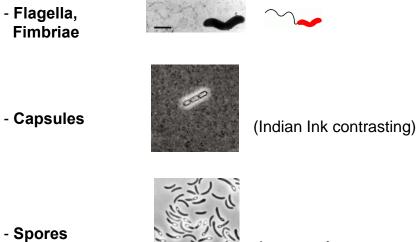
LPS (Lipid A) active as Endotoxin ("although the major function is structural")

Brock/Madigan 10th ed.

Cell walls of Gram-negative and Gram-positive Bacteria and Archaea

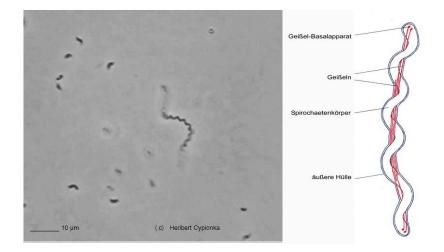
Cypionka, Grundl. der Mikrobiologie

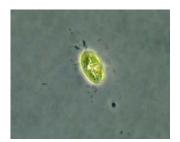
S-Layer


S-layers are the outermost component of the cell wall of many bacteria and most of archaea.

S-layer proteins form natural twodimensional protein crystals covering the cell completely and confering stability in addition to other structures of the cell envelope.

www.biochem.mpg.de/baumeister/membran/S-layers

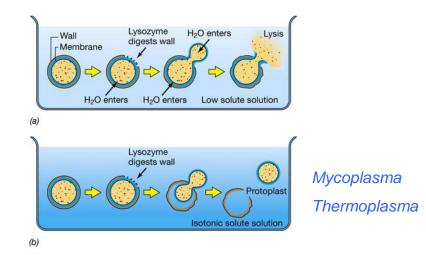

Cell surface structures


- Spores

(not a surface structure)

Spiroch(a)ete and Spirilli

Slime capsules

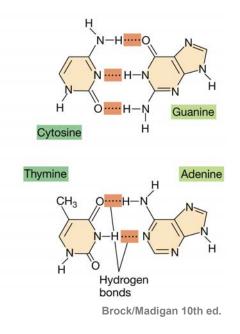


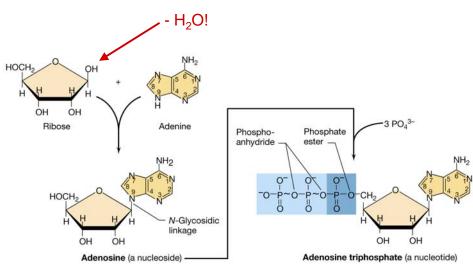
Alga in a horse trough

Capsule visualisation by means of indian ink (negative contrasti)

Cells without cell wall?

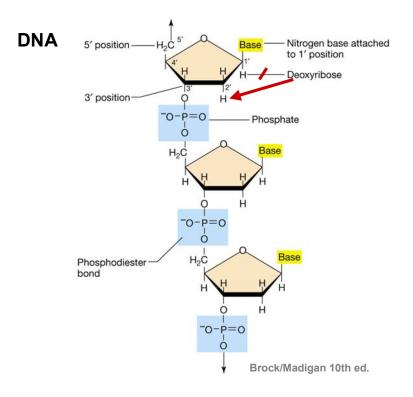
Brock/Madigan 10th ed.

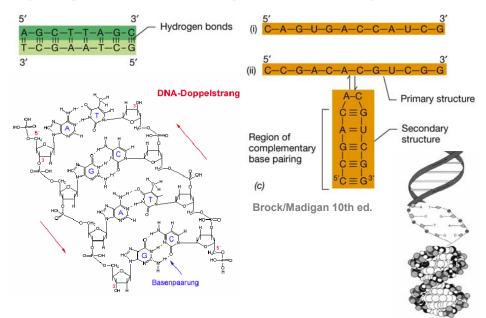



Nucleoid

- Mostly 1 chromosome
- Many with plasmids

Brock/Madigan 10th ed.


Building blocks of nucleic acids



N-Glycosidic linkage, anhydride, ester

Brock/Madigan 10th ed.

Hydrogen bonds, primary and secondary structure

How much information is encoded in DNA?

E. coli: 1.3 mm DNA = 4 million base pairs about 4 000 proteins encoded 2 bits per base 8 million bits = 1 MB

For comparison: Human genome 1 m DNA, about 25 000 genes

Cytoplasm: Composition of a bacterial cell

Compound o	Percent f dry mass	Per cell (≈10 ⁻¹⁵ l)	
		Number of molecules	Different molecules
H₂O	500	10 ¹¹	1
Proteins	50	10 ⁶	1000
Cell wall	20	1	1
RNA	15	104	1000
		(Ribosomes)	(mRNAs)
DNA	3	1	1
Lipids	5	10 ⁶	50
Small org. com	pds. 5	10 ⁶	200
(Amino acids, A	TP)		
Inorg. lons (K+)	· 1	10 ⁸	20
H+ (pH≈8)	0	6	1