

0.1 changes per site

Evolution

Changes over time within the lineage of an organism that leads to the formation of novel species or to a variation within a species.

Evolution of life on Earth Geological und fossile evidences

Million years ago

- 4600 Formation of planet Earth
- 3500 Microbial life (stromatolites)
- 2800 O₂-producing photosynthesis by *Cyanobacteria*
- 2000-1800 Accumulation of O₂ in the atmosphere

Early microorganisms

• have developed app. 3.6 to 4.0 billion years ago

Metabolism

• ability to collect nutrients to transform them and to gain energy from it

Reproduction

ability to replicate own attributes and to transfer them to offsprings

Environmental conditions on early Earth

- reducing atmosphere. No oxygen (O₂)
- important compounds: H₂O, CH₄, CO₂, N₂, NH₃, CO, H₂, H₂S
- surface temperature: partly more than 100°C
- strong UV radiation, electric discharge

Miller-(Urey) Experiment

- simulation of early earth conditions in the laboratory
- · leads to the formation of biochemical relevant molecules:
- sugars, amino acids, purines & pyrimidines, nucleotides, thioester, fatty acids
- · accumulation of these compounds due to a lack of biological degradation
- after cooling of earth: stabilisation of the organic compounds and inclusion in membrane-like structures

The Miller-Urey experiment

Principle of the experiment

Two main reaction chambers

Water is circulating through the apparatus

Lower vessel: simulation of the hot paleo-ocean

Upper vessel:

simulation of the paleo atmosphere: H_2 , NH_3 , methane and steam

lightning simulated by electrodes

Reaction products are led through a **condensor**

W-formed construction: capture of water soluble reaction compounds at the bottom of the apparatus

Miller-Urey experiment

Stanley L. Miller and his appatatus

The products of the experiment

Tar	85	%		
div. Carbolic acids	13.0	%		
Glycin	1.05	5%		
Alanin	0.85%			
Glutamic acid	traces			
Asparagic acid	traces			
Valin	trace	s		
Leucin	trace	s		
Serin	trace	s		
Prolin	trace	s		
Threonin	trace	s		

In 1969, a meteorite was found in Australia was showing the same composition of amino acids as the in the Miller-Urey experiment!

Building blocks of life in stellar dust and gas clouds?

- Simulation of environmental conditions in vacuum chambers (Uni Bremen)
 - icy aluminum plate
 - vaporization of simple chemical compounds
 - H₂O, CO₂, NH₄, CH₃OH get attached
 - radiation simulated by a strong UV-lamp
 - formation of complex organic compounds
 - detection with an Infrared-spectrometer

After heating up of the aluminum block: Detection of Sixteen different amino acids within the icy-layers

Habitability on Europa

- Thickness of the icy and dusty shield: more than 80 to 170 km
- The proposed ocean has a thickness of more than 100 km
 - Regeneration every 10 million years (melting of the lowest layers)
 - Gravity forces of Jupiter is dispersing the surface of Europa, meltwater is flowing upwards through cracks in the ice

Back to Earth

Open question: How was the first organism formed?

The RNA world: Possible scenario for the evolution of cellular life

Self-replicating RNAs could have become cellular entities by becoming stably integrated into lipoprotein vesicles.

Metabolism:

• must have been anaerobically (no O₂ in the atmosphere)

Energy yield:

- oxidation of organic compounds (chemoorganotrophy)
- oxidation of inorganic compounds (chemolithotrophy)
- (driven by light phototrophy)

Metabolic pathway must have been simple

e.g. formation of iron sulfide

 $FeCO_3 + 2 H_2S \Rightarrow FeS_2 + H_2 + H_2O + CO_2$

 $FeS + H_2S \Rightarrow FeS_2 + H_2$

only a few enzymes nessecary!

Fossile evidences for microbial life

Cyanobacteriea from the Precambrian (app. 3.5 billion years old), oldest known fossiles

fossile Cyanobacterium from North-Australia (app. 1 billion years old)

actual living Cyanobacterium (Oscillatoria)

Stromatolites

Cyanobacteria can form Stromatolites

Laminated structure, embeddind in sediments; Bacteria produce calcium carbonates Thin-sections show fossile cyanobacteria and algae

Phylogeny:

Classification of species in superior taxa and construction of phylogenetic trees based on evolutionary relationships.

Endosymbiotic theory: *Proteobacteria* ⇒ Mitochondria *Cyanobacteria* ⇒ Chloroplasts

Novel theory: There was not **the** common ancestor Life has evolved out of multiple ancestoral cells.

Some have prevailed to become ancestors of Bacteria, Archaea and Eukarya.

Horizontal gene transfer

 between organisms (even from different domains) might have played an important role evolution.

"Darwinian threshold"

- in the beginning: Horizontal gene transfer (open systems of cells)
- afterwards: Etablishment of cell compartments (Horizontal gene transfer less important)

Variety of ancestoral cells Horizontal gene transfer between organisms

How many different bacteria do we expect?

Validly described species: 5 000 Prokaryotes (Bacteria und Archaea) 1 700 000 Eukaryotes

Estimations for different bacterial species in 30 g forrest soil

3 000 (Torsvik et al., 1990) 500 000 (Dykhuizen 1998) (based on the same data set)

The big debate: What is a species??? How to classify a microbe?

only a weak hint to determine microbial affiliation

Hierarchical structure in taxonomy

Bacteria	domain
Proteobacteria	phylum
Gammaproteobacteria	class
Enterobacteriales	order
Enterobacteriaceae	family
Escherichia	genus
Escherichia coli	species
Escherichia coli K12	strain

Phylogenetic overview on the bacterial domain

Aquifex-Hydrogenobacter group

- hyperthermophile (opt. >80°C), chemolithotroph,
- Aquifex probably most similar to bacterial ancestor

Thermotoga

• hyperthermophile, chemoorganotroph

Green non sulfur bacteria (GNSB), Chloroflexi

- partly phototroph, thermophile (opt. 45-80°C),
- chemoorganotroph

Deinococcus group

- partly radiation resistant (UV- and gamma ray)
- (D.radiodurans extremly effective DNA repair mechanisms),
- partly thermophile

Phylogenetic overview on the bacterial domain

Spirochetes

· conspicious morphology, special apparatus of movement, partly pathogen

Gree sulfur bacteria

- strictly anaerobic, obligat phototroph,
- can utilise simple organic compounds, if there are reduced sulfur compounds available

Cytophaga Flavobacteria Bacteroidetes (CFB)

- aerobic and anaerobic, polymer degrader
- some show gliding movement

Planctomyces

- reproduction by budding, no peptidoglycan
- · aerobic, mainly aquatic

Phylogenetic overview on the bacterial domain

Chlamydia

• obligate intracellular parasites, many pathogens

Cyanobacteria

oxygenic phototrophs

Gram positives (Firmicutes)

- big heterogeneous group divided into two subgroups
- high GC (Actinobacteria) and low GC gram positives

Proteobacteria

- biggest group, pysiologically diverse
- five subgroups (alpha, beta, gamma, delta, epsilon)

Molecular techniques

Analysis of ribosomal nucleic acids

 Ribosomes are cellular maschines for the construction of proteins and enzymes

- present in all living organisms
- high copy number
- up to 20.000 ribosomes per cell
- sufficient number of nucleotides for phylogenetic analyses

The ribosomal RNA is the backbone of the ribosome

• 16S rRNA: app. 1.500 bp

Ribosomal RNA for phylogenetic analyses

Due to the essential function of ribosomal nucleic acids:

- Mutation is often lethal
- Independent (constant) pressure of selection
- · Highly conserved at many positions
- Comparison of analogous, but variable sequences
- Almost no gene transfer

Changes of sequences happen with a constant speed, but slowly enough to mirror the whole time of bacterial evolution (Carl Woese, 1987)

The evolution of the molecule mirrors the evolution of its host ("molecular clock")

The prokaryotic 16S rRNA

- The molecular clock shows a different speed in some areas of the rRNA.
- Mutations in highly conserved regions happened evolutionary at earlier stages than in variable regions.

The 16S rRNA as a "molecular clock" of evolution

The investigation of phylogenetic relationships according to rRNA-sequences by Woese & Fox (1977) finally led to the classification of all organisms into the domains: Bacteria, Archaea and Eukarya (Woese, 1990).

Greate Edit	Aren IIIe	ck frope	rties										
V QUIT HELP	Position 0	E.coli	Base	IUPAC	Helix No.	JUNDO	GET Align REDO Protec	Insert	5'	A Jhis is HWB Ed	it4 (Build 03_08_22)		
CONE	User1],				_1877 HOLT		Primer a	AT HOT. DR	- Signa	ture and son in			
allit Probe lacgo	-escua					Primer a	KT HUT, BE	o Signa	ture stat tot a				
	Probe local	locc, yackin	cu		_101 HIL		Primer (global)	87 807 . III	0 800	100 _161 HOT_ IM	0		
SAI: Ecoli (usual SAI: HELIX SAI: HELIX_NR	lly)	Odata Odata Omark OREF Odata	-\$-80-9-1		;-UU-V [,<,,<<<	6-2U .<<.[GA-G-A-U-	G-8-G8	-ð-IJ-G-L	-gc-c .<<< <c, <<="" td=""><td></td><td>99-4 </td><td>-8-00-0-0-08-08 .].]>.>.>.>.>.>]. .36</td></c,>		99-4 	-8-00-0-0-08-08 .].]>.>.>.>.>.>]. .36
Bradyri Brada Rhodopli RhmSp	hizobium_1 i p47 anes et rel. (1 xe10	CONS 5data CONS 5data	-U-CC-A-4 -U-CC-A-4 -C-CA-C-4 -C-CA-C-4	X3ACO X5ACO 3A-O 3A-O	3-GU-C 3-GU-C 3-GVVV	GC-A	GA=G=A=U= GA=G=A=U= GA=G=A=U= GA=G=A=U=	G-U-G G-U-G G-G-A-CU G-G-8-EV	0=0=0=0=0 0=0=0=2=0 0=0=0=0=0 0=0=0=0=0 0=0=0=0 0 0 0 0 0 0 0 0 0 0 0 0 0	1-CU-C	U-UC-G 	CA - C Gb - C 	-C-CU-G-G-AA-CA -Ş-CU-G-G-AA-CA -G-CG-U-G-GA-CA -G-CG-U-G-GA-CA
Azorhizo	blum - Xanti to2	-CONS Sdata	-G-CA-G-0	A-0	2-9AAA	6-22	GA=G=A=U= GA=G=A=U=	G=G=A=UG G-G-8-V§	-0-c-0-u -U-C-U-U	I-CC-A	G-CA-A		-A-CC-U-G-CA-CA -8-CC-U-C-C
MhiEchil RhtAcide	2	5data Sdata	-2-00-0-0	A-0		65-9	GA-G-A-U-	G-U-U-DL	-U-C-U-U	-66			
Rhizobia RhzGia UncSol SnrSpe	osae (4) ard 86 12	-CONS 5data 5data 5data	-C=CG=A=1 -G=Q2-2- 1-G=Q2-2- 1-G=Q2-2-	JCG-0 JCG-0 JCG-0 JCG-0	-GAUU -GACA -GAVV -GAVV	ac-G	GA=G=A=C= GA=G=A=C= GA=G=A=C= GA=G=A=C=	g=0-0-0-00 8-0-0-0-00 G-0-0-00 G-0-0-00		- C - A - G - C B - G - C B - G - C B - G - C - B - G		CU-C CU-G CU-G CU-G	-G-AU-C-G-Ga-GA -G-AU-C-G-GU-GA -G-AU-C-G-Ga-GA -G-AU-C-G-Ga-GA
Sphingor Sphing Sphing Sphing	nonadaceae omonas caps uba3	Sdata (-CONS -CONS 5data	-C=CG=G=I =C=CG=G=I -C=CG=G=I	JC===G=0 JC===G=0 JC===G=0	1-GAUU 1-GAUU 1-GAUU	-UG-G	GA=G=A=C= GA=G=A=C= GA=G=A=C=	C=A=U=UE C=A=U=UE C=A=U=UE C=A=U=UE	U=U=2=3=3= U=U=2=3= U=U=2=2= U=U=2=2=	I=C==A=G====== I=C==A=G====== I=C==A=G======		cu-cu-c cu-cu-c	-G-AC-C-G-UG-CA -G-AC-C-G-UG-CA -G-AC-C-G-UG-CA -G-AC-C-G-UG-CA
Bacteroide	tes (2)	-CONS	=R=RH=U=4	c-H	C=H==R=H	KU-R==	GA-R-A-Y-	A-K-HY	-H=U=U=.	U-C	U-UC-G	GA	=.=CK=K=Y=U===U=HC

Alignment of 16S rRNA sequences

16S rRNAs in the database

Currently 1 074 075 sequences

National Center for Biotechnology Information National Library of Medicine National Institutes of Health

1231	anoment Destahansa Bening	EN EL
MICHIGAN STATE	Ó	
	Home Page Announcements Online Analyses Citatio Download Area Documentation Conta	n to

Aug 31, 2009

Is it enough to define a species?

Results and interpretation

Application of molecular probes

- Hybridization
 - Probe (Oligonucleotide) at a target sequence (mostly 16S rRNA)
- Specificity
 - Strain, family, ... up to the domain (dependent on target sequence)

Most important technique

Fluorescence-In-Situ-Hybridization, FISH

- with fixed cells (binding at ribosomes)
 - signal enhancement by higher ribosome content or
 - enzymatic amplification (CARD-FISH)

Specific detection microorganisms

Fluorescence In-situ Hybridisation, FISH:

Cells fixed on filter

Hybridisation:

Probe binds at a target sequence (mostly 16S rRNA) Signal enhancement by higher ribosome content

Specificity:

Strain, family, ... up to domain

Quantification:

Non specific vs. specific signals

Analysis of bacterial communities by Fluorescence-In-Situ-Hybridization, FISH

- Coupling of molecular "probes" with fluorescent dyes
- Annealing at specific regions of the rRNA
- Staining of cells on different phylogenetic levels
- Detection under a microscopic slide (in situ)

Anaerobic methane oxidsing consortia

Boetius, et al. (2000) Nature. 407:623-626

detected in gas hydrate bearing sediments

detected in tidal flat sediments

Archaea (ARCH915) Desulfosarcina (DSS658)

Stronghold of Fluorescence-In-Situ-Hybridization is the MPI in Bremen!

Questions:

Is there a 16S rDNA? Why do we prefer to analyse DNA? When do we analyse RNA? How can we analyse strains below the species level? What will future bring?