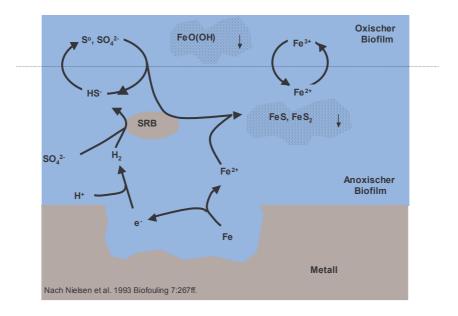
04.01.05 VL 10

Ökonomische Aspekte


Biokorrosion, Erzlaugung, Erdöllagerstätten

Biokorrosion, Microbially influenced corrosion (MIC)

Elektrochemischer Prozess, der durch mikrobielle Aktivität gefördert wird Wasserstoffkorrosion unter anoxischen Bedingungen (Fe $^{\circ}$ + 2 H $^{+}$ \longrightarrow Fe $^{2+}$ + H $_{2}$)

Sulfatreduzierer spielen eine wichtige Rolle als effektive Wasserstoff-Oxidierer:

Endprodukt ist H₂S, das mit Fe²⁺ als schwerlösliches Eisensulfid FeS ausfällt

Als Schutzmechanismen gegen Korrosion/Biokorrosion werden eingesetzt:

- Spezielle Anstriche (z.B. mit Tributylzinn und Bioziden)
- Verzinkung
- Einsatz von Schutzkathoden (Opferanoden)

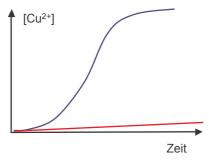
Hierzu werden unedlere Metalle verwendet, z.B. Magnesium

Biokorrosion spielt eine wichtige Rolle:

- Pipelines
- Trinkwasserbereich, Trinkwasserleitungen
- Pumpen
- Erdöl- und Erdgasförderung

Erzlaugung, Bacterial Leaching

Kupfermine bei Salt Lake City


Abb.: Spektrum der Wissenschaft; Verständliche Forschung: Industrielle Mikrobiologie, 1987

Bakterielle Erzlaugung wird eingesetzt, wenn:

der Gehalt an dem zu gewinnenden Metall im Erz gering ist sich konventionelle Erzanreicherung nicht rentiert Kupfererze meist unter 1 % Cu es sich hauptsächlich um sulfidische Erze handelt z.B. mit Covellit (CuS), Pyrit (FeS₂)

Metallsulfide sind in der Regel schwer löslich werden durch Oxidation in die lösliche Form überführt ein saures Milieu hält dreiwertiges Eisen in Lösung katalysiert durch chemolithotrophe Mikroorganismen viele "Laugungsbakterien" sind autotroph und thermophil

Beschleunigung der Auflösung der Metalsulfide z.B. durch Bakterien wie Acidithiobacillus ferrooxidans

Freisetzung von Cu2+ aus einem mit Acidithiobacillus ferrooxidans (blau) und in steriler Kontrolle (rot).

H₂S reagiert spontan mit Luftsauerstoff.

Metallsulfide reagieren zwar auch mit O2, die Reaktion läuft aber extrem langsam ab.

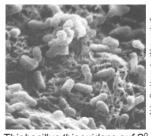
> Mineralien die leichter spontan oxidieren werden auch Mikroorganismen zuerst aufoxidiert (FeS>CuS>PbS).

Thiobacillus ferrooxidans kann Metalle (Cu+, Fe2+) als such Sulfid oxidieren

Kupferlaugung

1.
$$Cu_2S + O_2 \longrightarrow CuS + Cu^{2+}_{(aq)} + H_2O$$

2. $CuS + O_2 \longrightarrow Cu^{2+} + SO_4^{2-}$
3. $CuS + 8 Fe^{3+} + 4H_2O \longrightarrow Cu^{2+} + 8 Fe^{2+} + SO_4^{2-} + 8 H^+$


2.
$$CuS + O_2 \longrightarrow Cu^{2+} + SO_4^{2-}$$

3. CuS + 8 Fe³⁺ + 4H₂O
$$\longrightarrow$$
 Cu²⁺ + 8 Fe²⁺ + SO₄²⁻ + 8 H⁺

Reaktion 3 ist vermutlich die wichtigste

Fe3+ ist ein gutes Oxidationsmittel für Sulfidmineralien und wird effektiv von Thiobacillus sp. reoxidiert.

Gold und Uran sind weitere wichtige Metalle die durch Laugung gewonnen werden

Thiobacillus thiooxidans auf So (15 000 fach vergrößert)

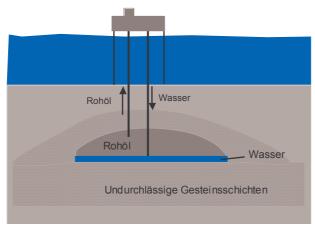
Mikroorganismen und Erdöl

Von besonderer Bedeutung in der Erdölförderung sind sulfatreduzierende Mikroorganismen:

Sulfidbildung

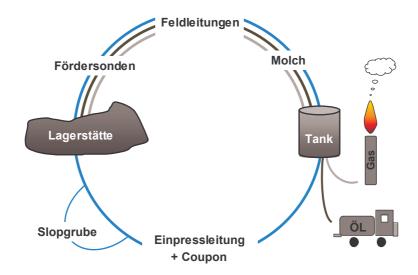
Bildung von SO_2 bei Verbrennung von H_2S

Toxizität


Versauerung Biokorrosion

Ölhaltige Schicht

Wie kommen sulfatreduzierende Bakterien in die Ölfelder?



Um den Druck in den Erdöllagerstätten aufrecht zu erhalten, wird Wasser unter Druck eingepresst.

Eintrag von Nährstoffen (N, P) und Sulfat

(und Mikroorganismen?)

Mögliche Führung des Lagerstättenwassers bei der Erdölförderung

Sind die Mikroorganismen in den Ölfeldern autochthone "deep subsurface" Mikroorganismen?

- + Die meisten Isolate aus Öllagerstätten Standorten sind themophil z.B. *Desulfotomaculum* sp. *Thermodesulforhabdus* sp., u.a.
- Ein Großteil dieser Isolate wächst nicht auf Rohölbestandteilen.

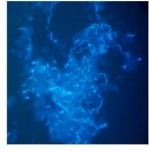
 ${\hbox{\it Evtl. syntrophe Mikroorganismenge}} meinschaft.$

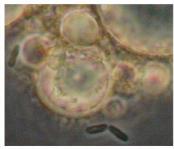
Bsp. Mischkultur, die Hexadekan zu ${\rm CO_2}$ und ${\rm CH_4}$ abbaut, bestehend aus unterschiedlichen Mikroorganismen, u.a. Sulfatreduzierern. (Zengler et al. 1999, Nature)

Wovon leben die Organismen in den Ölfeldern?

Hauptbestandteile des Erdöls sind:

Gibt es bakterielle Kulturen, die diese schwer abbaubaren Verbindungen anaerob oxidieren können?


lst es wahrscheinlich, daß Alkane und Aromaten umgesetzt werden, wenn leichter abbaubare Substrate zur Verfügung stehen?


Bsp.

"Amoco Cadiz" Tankerunglück (Normandie, 1978). 223.000 m 3 Rohöl liefen aus, davon wurden 10.000 m 3 mikrobiell abgebaut. Der Rest hat sich abgesetzt oder ist verdunstet.

(Gundlach et al. 1983 Nature 221:122)

Detaillierter Nachweis von thermophilen sulfatreduzierenden Prokaryonten (SRP) in einer Erdöllagerstätte mit angeschlossenem Betrieb

Bearbeitung der Projekte:

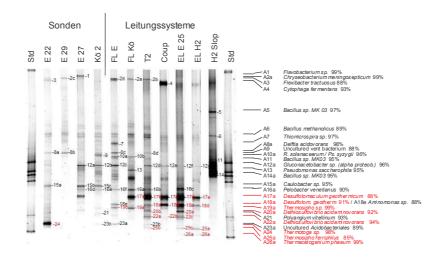
Katja Ziegelmüller Zeynep Yeğin Dr. Michael Böttcher Dr. Bert Engelen Maren Fröhlich Dipl.-Biol. Andrea Schlingloff Dr. Andrea Sass Dr. Bert Engelen

Oliver Roß Gerke Kunz Dr. Bert Engelen

Fragestellung des Auftraggebers:

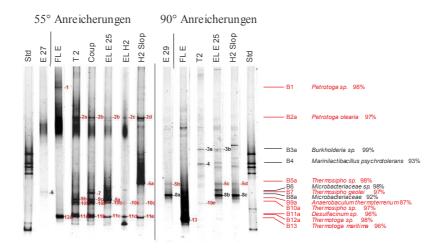
- Wird H₂S in Lagerstätte oder im Betrieb produziert?
- Behindern die H₂S-Gehalte die geplante Einrichtung eines Erdgasspeichers?

Untersuchungen folgender Fragenkomplexe:

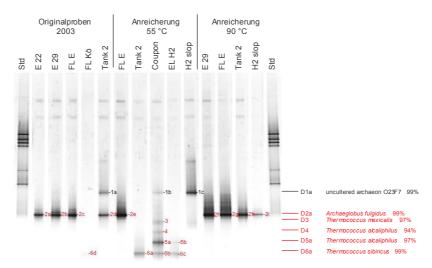

Wie unterscheidet sich die mikrobielle Zusammensetzung in Fördersonden und Leitungssystemen?

- Gesamtzellzahlbestimmung der Standortproben
- molekularbiologischer Nachweis von (hyper)thermophilen sulfatreduzierenden Bakterien und Archaeen

Ist Wachstum bei in situ-Temperaturen möglich?


- Anreicherung bei 55°C und bei 90°C

DGGE-Gel A: Originalproben Juli 2003



rote Schrift: Sulfat-, Thiosulfat- und Schwefelreduzierer

DGGE-Gel B: Kultivierungsansätze 2003

DGGE-Gel D: Archaea in Originalproben und Kultivierungsansätzen 2003

Detektierte H_2 S-Produzenten aus den Lagerstättenwässern (Probenahme 2003)

•			·	01	riginalp	roben 2	2003	·		
	detektierter Organismus	Förde	rs onde n	Leitungssysteme						
		E22	E29	FL E	FL Kö	Tank2	Coupon	EL E25	EL H2	
	Desulfotignum phosphitoxidans									
	Desulfobacter sp.									
mesophil	Desulfuromonas acetoxidans									
bis 40°C	Desulfovibrio gigantaeus									
	Dethiosulfovibrio sp.					х	х	х		
	Haloanaerobium congolense									
	Sulfate reducing bacteria									
	Desulfonauticus submarinus									
	Desulfacinum sp.									
thermophil	Desulfotomaculum sp.				х	х	х	х	х	
bis 65°C	Anaerobaculum thermoterrenum									
	Thermacetogenium phaeum							х	х	
	Petrotoga sp.									
	Thermosipho sp.			х	х	x	х	x	х	
hyper- thermophil	Thermotoga sp.	х								
über 65°C	Archaeoglobus fulgidus	х	х	х		x				
	Thermococcus sp.									

Detektierte H_2S -Produzenten aus den Anreicherungen

		Anreicherungen 2003											
	detektierter Organismus		55°C						90°C				
		FL E	Tank2	Coupon	EL E25	EL H2	H2 Slop	E29	FL E	Tank2	EL E25	H2 Slop	
	Desulfotignum phosphitoxidans												
	Desulfobacter sp.												
mesophil	Desulfuromonas acetoxidans												
bis 40°C	Desulfovibilo gigantaeus												
	Dethiosulfovibilo sp.												
	Haloanaerobium congolense												
	Sulfate reducing bacteria												
	Desulfonauticus submarinus												
	Desulfacinum sp.		х	x	x	х	х						
thermophil bis 65°C	Desulfotomaculum sp.												
	Anaerobaculum thermoterrenum		х	x	x								
	Thermacetogenium phaeum												
	Petrotoga sp.	х	х	х	х	х	х						
	Thermosipho sp.		х	х	х	х	х	х		х	х	х	
hyper-	Thermotoga sp.	х							x				
thermophil über 65°C	Archaeoglobus fulgidus	х						x	x	х		х	
uber 55 C	Thermococcus sp.			х									

Physiologische Merkmale der detektierten H₂S-Produzenten

detaltierter Omeniamus	Klasse/Ordnung	Temperatur [°C]		Schwefelquelle			erstmals isoliert	
detektierter Organismus		Bereich	Optimum	S ⁰	S ₂ O ₃	SO ₄ ²⁻	ersuriais isoliert	
Desulfotignum phosphitoxidans	Desulfobacterales	15-30	30	-	Х	Х	marine Sedimente	
Desulfobacter sp.	Desulfobacterales	20-33	30	-	Х	x	marine Sedimente; Öl-Lagerstättenwasser	
Desulfuromonas acetoxidans	Desulfuro mona dales	?	30	х	-	-	marine Sedimente	
Desulfovi brio gi ganta eus	Desulfovibrion ales	25-40	35	-	Х	x	Küstensediment	
Dethiosulfovibri o sp.	Clostridia	15-40	28	х	Х	-	Biofilm	
Haloan aerobium congol ense	Clostridia	20-45	42	х	Х	-	Offshore Ölfeld	
Sulfate reducing bacteria	?	?	?	?	?	?	Rohöl	
Desulfonauticus submarinus	Desulfovibrion ales	30-60	45	х	Х	x	hydrothermaler Schlot	
Desulfacinum sp.	Syntrophobacterales	45-65	60	х	Х	x	Offshore Ölfeld	
Desulfotomaculum geothermicum	Clostridia	50-60	54	-	Х	x	geothermales Grundwasser; GASAG	
Anaerobaculum thermoterrenum	Clostridia	28-60	55	х	Х	-	Öl-Lagerstättenwasser	
Thermacetogenium phaeum	Clostridia	40-65	58	-	Х	x	Fabrikabwasser	
Petrotoga sp.	Thermotogales -	37-60	55	х	-	-	kontinentales Ölfeld	
Thermosipho sp.	Thermoto gales	45-75	70	х	-	-	kontinentales Ölfeld	
Thermotoga sp.	Thermoto gales	55-90	80	х	Х	-	Ölsonde	
Arch aeoglobus fulgidus	Archaeoglobales	60-90	76	-	Х	Х	hydrothermaler Schlot	
Thermococcus sp.	Thermoco ccales	56-90	85	х	-	-	hvdrothermaler Schlot:kontinentales Ölfeld	

Zusammenfassung der Ergebnisse

- Gesamtzellzahl: etwa 10⁶ Zellen/ml (wie 2002)
- Anreicherung: 7 von 11 bei 55°C und 5 von 11 bei 90°C
- Nachweis von: (hyper)thermophilen $\rm H_2S$ -Produzenten und erdöltypischen Begleitorganismen
- Allgemein: größerer Anteil von ${\rm H_2S\text{-}Produzenten}$ in Leitungssystemen
- Vergleich mit Untersuchung der 2002-Proben: dynamisches System in Lagerstätte und Betrieb
 - → schwankende H₂S-Gehalte durch unterschiedliche mikrobielle Zusammensetzung
- Überleben der 90°C-Anreicherungen bei 115°C für 30 Minuten nachgewiesen
- Kein Überleben der Anreicherungen bei längerer Inkubation unter Lagerstättentemperatur
- Bei Temperaturen zwischen 90°C und 115°C konnten keine Mikroorganismen angereichert werden