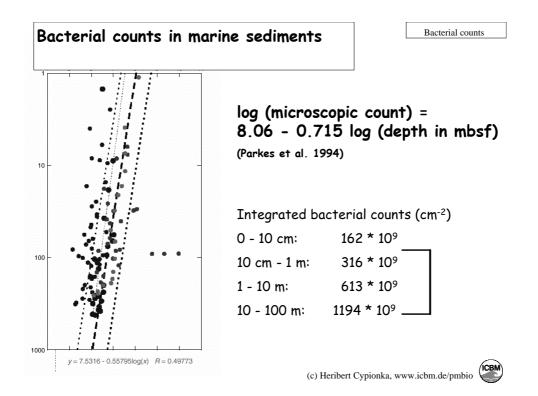


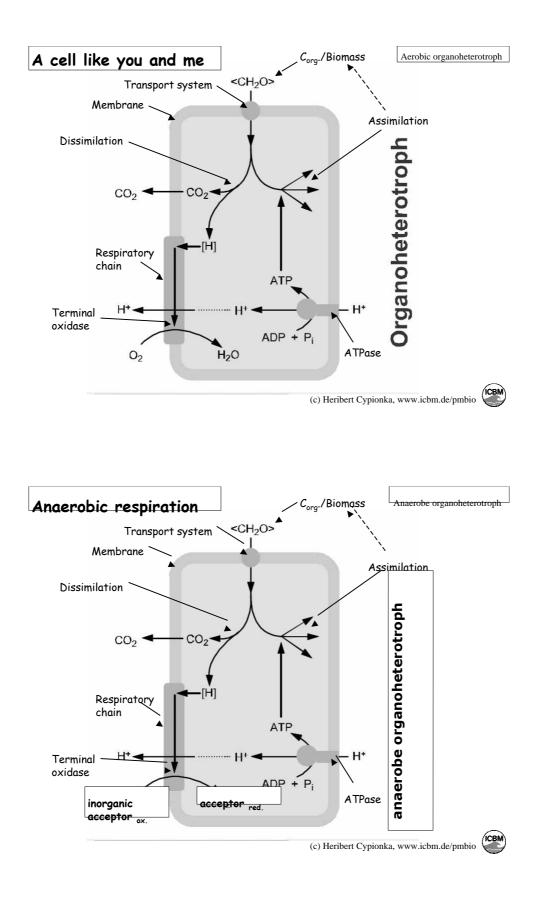
Motivation

Number of prokaryotes on earth	4 - 6 * 10 ³⁰
Cells in open ocean	1.2 * 10 ²⁹
in marine sediments	3.5 * 10 ³⁰
in soil	2.6 * 10 ²⁹
sub-terrestrial	0.5 - 2.5 * 10 ³⁰


Annual production of cells $1.7 \ 10^{30} \ a^{-1}$ Mean generation time in sediments $1 - 2 * \frac{10^3 \ a^{-1}}{10^3 \ a^{-1}}$

Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: The unseen majority. Proc Natl Acad Sci USA 95:6578-6583

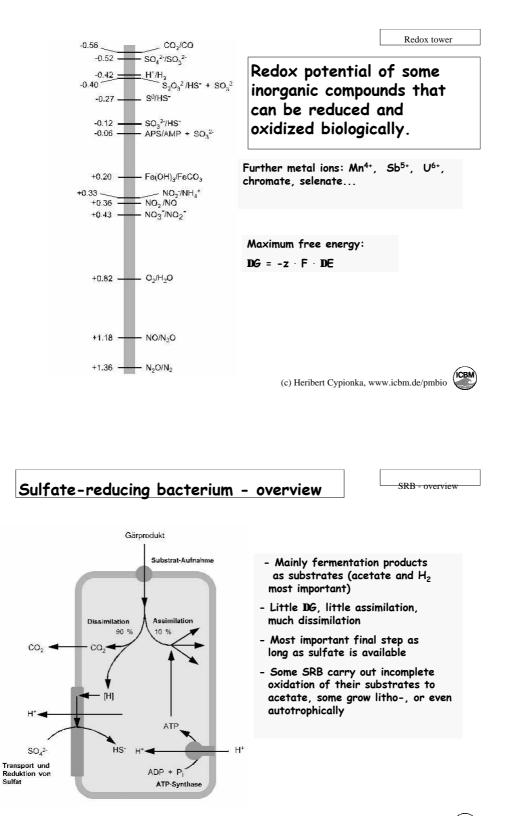
(c) Heribert Cypionka, www.icbm.de/pmbio


ICBM

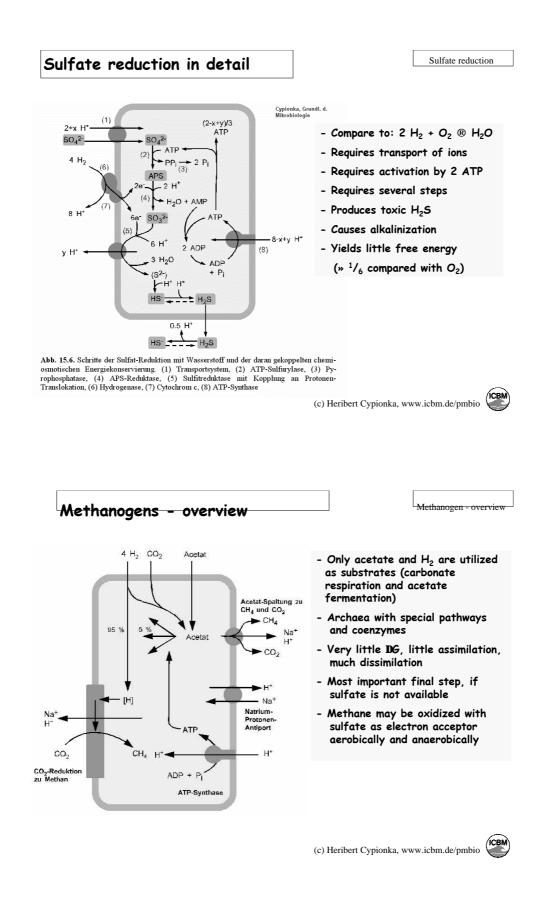
Where are they?

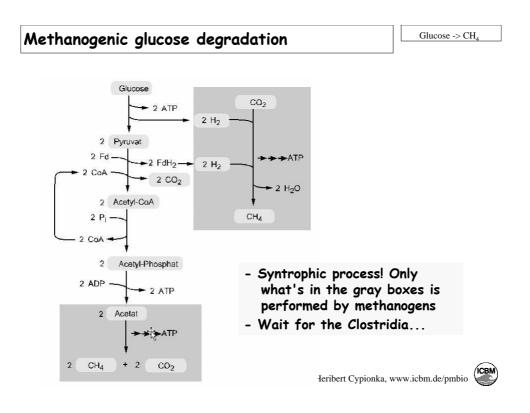
hemes	
What is the difference between aerobic and anaerobic respiration	?
What is the difference between respiration and fermentation?	
in which sequence can we bring these processes (with repect to space, time and energetics)?	
low are fermentation and respiration coupled to lithotrophic processes?	
Which products are formed, which resources consumed?	
/hich role had theses processes during early life history, and whic to the have in present-day sediments?	:h

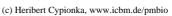
What is different when oxygen is replaced by $igsqcup$ another inorganic electron acceptor?	Aerobe vs. anaerobe
• There is less free energy (DG) available.	
• Dissimilation will increase.	
 There might be the necessity for transport of the acceptor or the reduced product. 	
\cdot There might be insoluble or charged products or educts.	
 The reduction is not a one-step reaction in most cases (i.e. we have several intermediate electron acceptors) 	
 The product might be toxic and will have to be recycled anyhow (lithotrophic processes). 	
 Oxygen might be lacking as reaction partner for the attack of some substrates (by oxygenase reactions). 	
· Several groups of anaerobes utilize a limited spectrum of substrates	

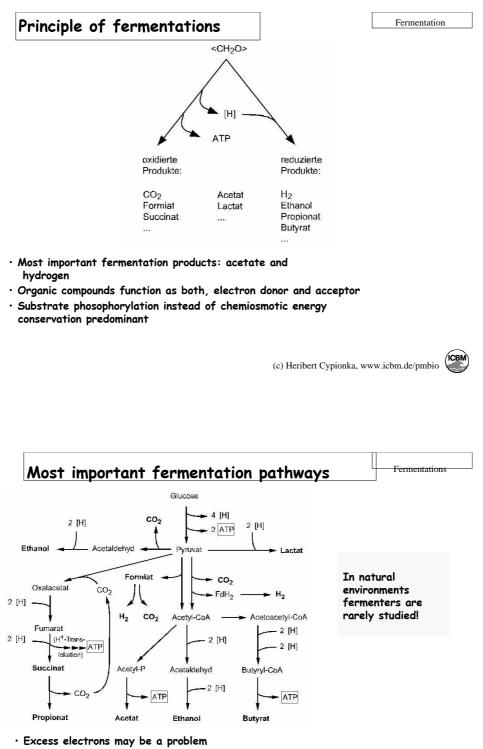

Respiration processe

-	_		x	
U	в	а	٦.	
ā		ς.	1	
-		2	1	
۰.	-	~		


Respiration processes

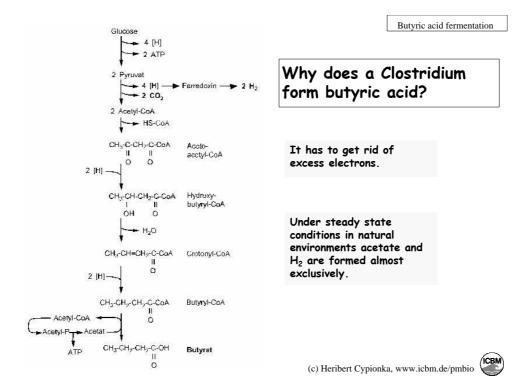

4 [H] + $O_2 \rightarrow 2 H_2 O$	Aerobic respiration
5 [H] + NO ₃ ⁻ + H ⁺ $\rightarrow \frac{1}{2}$ N ₂ + 3 H ₂ O	Denitrification
8 [H] + NO ₃ ⁻ + 2 H ⁺ \rightarrow NH ₄ ⁺ + 3 H ₂ O	Nitrate ammonification
$[H] + Fe^{3+} \rightarrow Fe^{2+} + H^{*}$	Iron reduction
2 [H] + $Mn^{4+} \rightarrow Mn^{2+}$ + 2 H ⁺	Manganese reduction
8 [H] + SO ₄ ²⁻ + 2 H ⁺ \rightarrow H ₂ S + 4 H ₂ O	Sulfate reduction
2 [H] + S \rightarrow H ₂ S	Sulfur reduction
8 [H] + $CO_2 \rightarrow CH_4$ + 2 H_2O	CO_2 reduction to methane
8 [H] + 2 $CO_2 \rightarrow CH_3COOH$ + 2 H_2O	CO_2 reduction to acetate
2 H ⁺ + e ⁻ \rightarrow H ₂	Proton reduction (by fermenters without energy conservation)



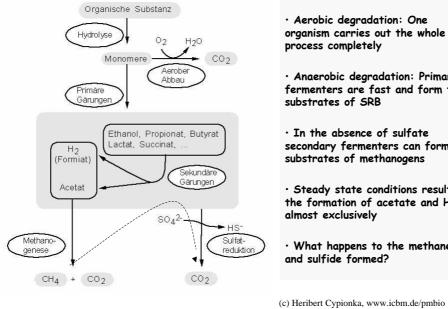


What is different when there is no inorganic electron acceptor at all?

- There is even less free energy (DG) available.
- Dissimilation will increase.
- \cdot The only energy-yielding process is fermentation.
- Some substrates are easily fermentable. Others require the symbiotic cooperation with symbiotic partners.



No electron accep



- \cdot As long as sulfate or $CO_{\rm 2}$ (+SRB/methanogens) are present the problem is solvable
- Alternatively, two-substrate fermentation may be possible (one organic compound as donor another one as electron acceptor)

Main steps involved in the degradation of organic matter

• Aerobic degradation: One organism carries out the whole process completely

Mineralisation

• Anaerobic degradation: Primary fermenters are fast and form the substrates of SRB

• In the absence of sulfate secondary fermenters can form the substrates of methanogens

· Steady state conditions result in the formation of acetate and H_2 , almost exclusively

• What happens to the methane and sulfide formed?

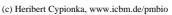
What happens to the reduced products of the anaerobic respirations?

Dogma of the biological infallibility:

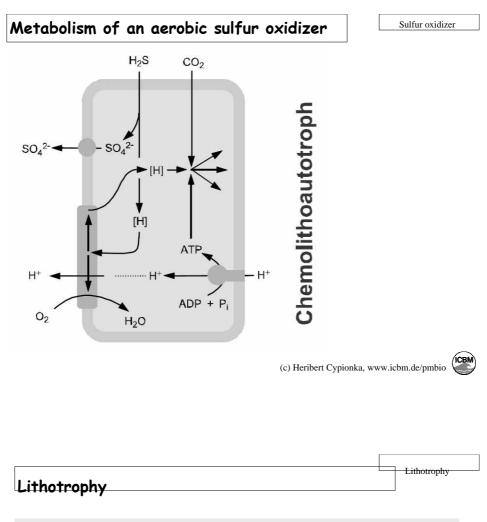
What has been formed biologically can be degraded biologically.

- Holds true without any exceptions, but not without preconditions and loopways
- Is fulfilled mainly by microorganisms

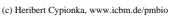
(c) Heribert Cypionka, www.icbm.de/pmbio

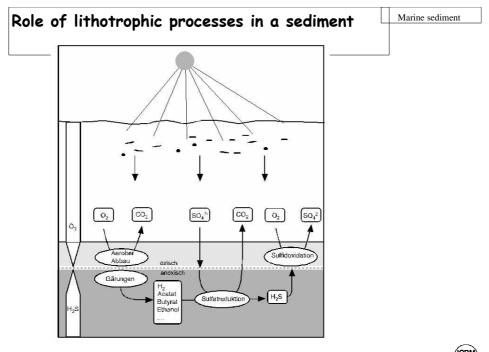

ICBM

Lithotrophy


Lithotrophic processes

Electron donor	Oxidized end product	Process (example)
$H_2 \rightarrow$	H⁺	Hydrogen oxidation (Knallgas bacteria)
$\begin{array}{cc} {\cal C} {\sf H}_4 & {\rightarrow} {\rightarrow} {}^{\star)} \\ & {\cal O}_2 ! \end{array}$	CO2	Methane oxidation (oxygenase!) (Methylo- or methanotrophs)
$H_2S \ \rightarrow \rightarrow \rightarrow$	50 ₄ ²⁻	Sulfurication (Thiobacillus or phototrophic sulfur bacteria)
$Fe^{2+} \rightarrow$	Fe³+	Iron oxidation (Gallionella)
$N_2 \rightarrow \rightarrow \rightarrow \rightarrow$	NO3-	unknown (via loopway, only)
$N\bar{H}_{4}^{+} \rightarrow \rightarrow \rightarrow$	NO ₃ -	Nitrification, stepwise by 2 Bacteria
$NH_{4^{+}}^{+} \xrightarrow{\rightarrow} O_{2}!$	NO ₂ -	Nitrosomonas (Oxygenase!)
$NO_2^- \rightarrow$	NO3-	Nitrobacter
H₂O →	O ₂ °	Oxygenic photosynthesis (Cyanobacteria, chloroplasts)


)More than one arrow indicates multi-step processes



- o Only found at Prokaryotes
- o Good electron acceptors form bad electron donors for lithotrophic processes and vice versa
- o Inorganic electron donors can be oxidized with different acceptors, if the redox potential is appropriate
- o Exceptions with inert molecules (alkanes, aromatic compounds, NH_3): Oxygen functions as reactant in oxygenase reactions, not as terminal acceptor
- New oxygen-independent pathways in several anaerobes detecte (hexadecane, methane...)

ICBM

Sediment lithotroph Processes in a sediment CO₂ CO2 02 SO42-02 SO42 02 Aerobe Sulfidoxidation Abbau oxisch anoxisch Gärungen Η, Acetat H₂S Sulfatreduktion Butyrat H_2S Ethanol

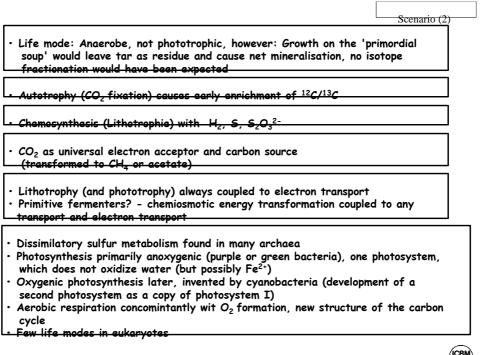
Biological loopways...

 $\boldsymbol{\cdot}$ Only half of the oxygen is consumed directly for the oxidation of organic matter

- \cdot Half of the organic matter is fermented and oxidized with sulfate and \textit{CO}_{2} as electron acceptor
- The sulfide (and methane) formed has to be reoxidized by lithotrophic (or methanotrophic) bacteria

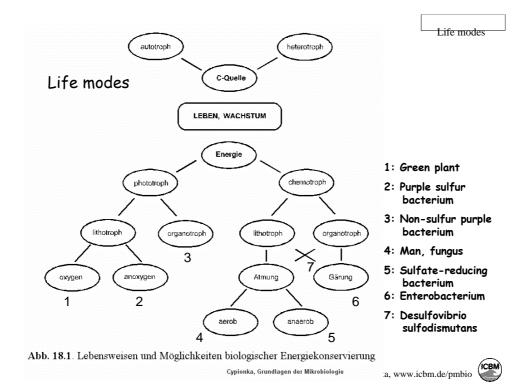
(c) Heribert Cypionka, www.icbm.de/pmbio

A plausible scenario - how life could have evolved


Abiotic formation of organic matter (Miller and Urey 1953) – on earth or extraterrestrial (but not supernatural) – low amounts, little reducing power of the (2nd) atmosphere

 Energy: Irridiation (light, UV, no ozone layer), chemical Energy (hydrolysis, redox processes)

 Evolution of the first cells by cyclic recursive processes (Hypercycle?, many open questions)
 ¹³C/¹²C Isotope fractioniation und fossil cell structures prove: At least 3.8 Ga before present life had developed: prokaryotic cells with membrane, DNA, protein, ATP...


· Lines with hyperthermophilic prokaryotes deeply branching, (heat cannot be an energy source!), no (true) phototrophs among the Archaea

(c) Heribert Cypionka, www.icbm.de/pmbio

Scenario (3)

